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Learning with Noisy Examples

• Label noise is (almost) everywhere.

• Noisy labels hinder learning.
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Source from vectorstock and google image



Previous Assumption: Class-conditional Noise (CCN)

• Assume the noise is instance-independent and class-conditional:

• Using the transition matrix, we have:

• Loss correction: rewrite the loss to an unbias estimator if given .

p(ỹ | x, y) = p(ỹ | y)
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Realistic Noise Type: Instance-dependent Noise (IDN)

• Realistic label noise is always instance-dependent.
• Confusing instances are more likely to be misclassified.

Source from Wikipedia.
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𝜋-LR: Probabilistic Instance-dependent Label Refinement

• Main idea:

• Modeling the true label from the probabilistic perspective.

• Estimating the confusing probability helps modeling label noise.

• Main result:

Here we slightly change the notation for convenience.



Instance-dependent Noise Modeling

• The estimated true label .
• Consider the jth term:

• Using the concept of confusing probability, we can expand the blue term as:

• The first term refer to the non-confusing case, which equals
• The second term can be estimated by the prediction of a trained model.
• Denote the resident part as

• Overall, we get
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What Next?

• Recall the main result:

• Two key components:
• Estimate the confusing probability.
• Estimate the instance transition ratio.



Estimation of Confusing Probabilities

• Challenge: No direct supervision
• Assumptions:

• The distributions of the confused and non-confused samples are different.
• Specifically, here we adopt the Gaussian mixture model (GMM) assumption.

• Estimation process



Optimization for Instance Transition Ratios

• Challenge: Intractable probabilistic inference.

• Set this term as learnable parameters.
• Derived optimization object via variational inference:
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Overall Procedure



Overall Procedure

• Classification loss with refined label:

• Evidence lower bound term for updating 𝑣!:

• Regularization terms.
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Empirical Studies

Robust against realistic label noise Low time and space overhead

Insensitive to hyper-parameters

𝜋-LR outperforms compared SOTA 
methods and keeps efficient in both 
time and space.



Conclusions

• Take Home Message:
• Estimating the confusing probability helps modeling IDN label noise.
• 𝜋-LR shows robustness against realistic label noise and keeps efficient.

• Future Directions:
• Better optimization process of the instance transition ratio 𝒗𝒊
• Expand to other weakly-supervised learning scenarios.



Thank you!
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Contact me: hehy@lamda.nju.edu.cn


