

Probabilistic Instance-dependent Label Refinement for Noisy Label Learning

Hao-Yuan He

Joint work with Yu Liu, Ren-Biao Liu, Zheng Xie and Ming Li.

LAMDA Group, School of Artificial Intelligence, Nanjing University

Learning with Noisy Examples

• Label noise is (almost) everywhere.

Crowdsourcing Label from non-experts

Search engine Label from web-crawler

• Noisy labels hinder learning.

Previous Assumption: Class-conditional Noise (CCN)

- Assume the noise is instance-independent and class-conditional: $p(\tilde{y} \mid x, y) = p(\tilde{y} \mid y)$
- Using the transition matrix, we have: $p_{\tilde{y}|x} = T^{\top} p_{y|x}$

$$\begin{pmatrix} p(\tilde{y}=1 \mid x) \\ \vdots \\ p(\tilde{y}=c \mid x) \end{pmatrix} = \begin{pmatrix} p(\tilde{y}=1 \mid y=1) & \dots & p(\tilde{y}=c \mid y=1) \\ \vdots & \ddots & \vdots \\ p(\tilde{y}=c \mid x) \end{pmatrix} \begin{pmatrix} p(y=1 \mid x) \\ \vdots \\ p(y=c \mid x) \end{pmatrix}$$

• Loss correction: rewrite the loss to an unbias estimator if given T.

$$\tilde{\ell}_{ir}(f(\boldsymbol{x}), y) = \frac{p(\boldsymbol{x}, y)}{\tilde{p}(\boldsymbol{x}, y)} \ell(f(\boldsymbol{x}), y) = \frac{\boldsymbol{g}_{y}(\boldsymbol{x})}{(T^{\top}\boldsymbol{g})_{y}(\boldsymbol{x})} \ell(f(\boldsymbol{x}), y)$$
$$\mathbb{E}_{(X, \tilde{Y}) \sim \tilde{D}} \left[\tilde{\ell}_{ir}(f(X), \tilde{Y}) \right] = \mathbb{E}_{(X, Y) \sim D} [\ell(f(X), Y)]$$

Realistic Noise Type: Instance-dependent Noise (IDN)

- Realistic label noise is always instance-dependent.
 - Confusing instances are more likely to be misclassified.

Source from Wikipedia.

π -LR: Probabilistic Instance-dependent Label Refinement

- Main idea:
 - Modeling the true label from the probabilistic perspective.
 - Estimating the confusing probability helps modeling label noise.
- Main result:

Model's predictionPotential noisy label
$$q_i = v_i \cdot \left(\eta_i \cdot \hat{y}_i + (1 - \eta_i) \cdot \tilde{y}_i \right),$$
Instance transition ratioConfusing probability

Here we slightly change the notation for convenience.

Instance-dependent Noise Modeling

- The estimated true label $q_i = \left[\Pr\left(\boldsymbol{y}_i^1 = 1 \mid \boldsymbol{x}_i\right), \dots, \Pr\left(\boldsymbol{y}_i^c = 1 \mid \boldsymbol{x}_i\right)\right]^{\top}$.
 - Consider the jth term:

$$\boldsymbol{q}_{i}^{j} = \Pr\left(\boldsymbol{y}_{i}^{j} = 1 \mid \boldsymbol{x}_{i}\right) = \frac{\Pr\left(\tilde{\boldsymbol{y}}_{i}, \boldsymbol{y}_{i}^{j} = 1 \mid \boldsymbol{x}_{i}\right)}{\Pr\left(\tilde{\boldsymbol{y}}_{i} \mid \boldsymbol{y}_{i}^{j} = 1, \boldsymbol{x}_{i}\right)} = \underbrace{\Pr\left(\tilde{\boldsymbol{y}}_{i} \mid \boldsymbol{x}_{i}\right)}_{\text{denote as } \psi_{i}} \cdot \frac{\Pr\left(\tilde{\boldsymbol{y}}_{i}^{j} = 1 \mid \boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right)}{\Pr\left(\tilde{\boldsymbol{y}}_{i} \mid \boldsymbol{y}_{i}^{j} = 1, \boldsymbol{x}_{i}\right)}$$

• Using the concept of confusing probability, we can expand the blue term as:

$$\Pr\left(\boldsymbol{y}_{i}^{j}=1 \mid s_{i}=0, \tilde{\boldsymbol{y}}_{i}, \boldsymbol{x}_{i}\right) \cdot (1-\eta_{i}) + \Pr\left(\boldsymbol{y}_{i}^{j}=1 \mid s_{i}=1, \tilde{\boldsymbol{y}}_{i}, \boldsymbol{x}_{i}\right) \cdot \eta_{i}$$

- The first term refer to the non-confusing case, which equals $\mathbb{I}\left(ilde{m{y}}_i^j=m{y}_i^j
 ight)= ilde{m{y}}_i^j$
- The second term can be estimated by the prediction of a trained model.
- Denote the resident part as $m{v}_i = \Pr(ilde{m{y}} \mid m{x}_i) / \Pr(ilde{m{y}}_i \mid m{y}_i^j = 1, m{x}_i)$
- Overall, we get

$$\boldsymbol{q}_i = \boldsymbol{v}_i \cdot (\eta_i \cdot \hat{\boldsymbol{y}}_i + (1 - \eta_i) \cdot \tilde{\boldsymbol{y}}_i)$$

What Next?

• Recall the main result:

- Two key components:
 - Estimate the confusing probability.
 - Estimate the instance transition ratio.

Estimation of Confusing Probabilities

• Challenge: No direct supervision

- Assumptions:
 - The distributions of the confused and non-confused samples are different.
 - Specifically, here we adopt the Gaussian mixture model (GMM) assumption.

• Estimation process

Optimization for Instance Transition Ratios

• Challenge: Intractable probabilistic inference.

 $oldsymbol{v}_i = \Pr(ilde{oldsymbol{y}} \mid oldsymbol{x}_i) / \Pr(ilde{oldsymbol{y}}_i \mid oldsymbol{y}_i^j = 1, oldsymbol{x}_i)$

- Set this term as learnable parameters.
 - Derived optimization object via variational inference:

$$\begin{split} \ell(\Theta) &= \sum_{i \in [N]} \log \Pr\left(\tilde{\boldsymbol{y}}_{i} \mid \boldsymbol{x}_{i}; \Theta\right) \\ &\geq \mathbb{E}_{i \in [N], j \in [c]} \left[\boldsymbol{q}_{i}^{j} \cdot \log\left[\Pr\left(\tilde{\boldsymbol{y}}_{i}, \boldsymbol{y}_{i}^{j} = 1 \mid \boldsymbol{x}_{i}; \Theta\right) \right] \right] + \text{ const.} \\ \hline \left(\mathcal{L}_{v} &= -\frac{1}{N \cdot c} \sum_{i \in [N]} \sum_{j \in [c]} \boldsymbol{q}_{i}^{j} \log\left(\psi_{i} \cdot (\eta_{i} \cdot \hat{\boldsymbol{y}}_{i} + (1 - \eta_{i}) \cdot \tilde{\boldsymbol{y}}_{i})\right) \right) & \text{Only update } \boldsymbol{v}_{i} \end{split}$$

Overall Procedure

Input: Training set $\{(\boldsymbol{x}_i, \tilde{\boldsymbol{y}}_i)\}_{i=1}^N$; training steps T; estimation step list \mathcal{T} . Output: Optimized parameters θ Initialize $\eta_i = 0, \forall i \in [N]$ Initialize $v_i = 1, \forall i \in [N]$ For t = 1 to T do Estimate the true label as $q_i = v_i \cdot (\eta_i \cdot \hat{\boldsymbol{y}}_i + (1 - \eta_i) \cdot \tilde{\boldsymbol{y}}_i)$. Calculate the loss terms. Update θ . If $t \in \mathcal{T}$ then Estimate $\eta_i, \forall i \in [N]$ End if End for

Overall Procedure

• Classification loss with refined label:

$$\mathcal{L}_c = \frac{1}{N} \sum_{i \in [N]} \text{CrossEntropy} (\boldsymbol{q}_i, \hat{\boldsymbol{y}}_i)$$

• Evidence lower bound term for updating v_i :

$$\mathcal{L}_{v} = -\frac{1}{N \cdot c} \sum_{i \in [N]} \sum_{j \in [c]} \boldsymbol{q}_{i}^{j} \log \left(\psi_{i} \cdot \left(\eta_{i} \cdot \hat{\boldsymbol{y}}_{i} + (1 - \eta_{i}) \cdot \tilde{\boldsymbol{y}}_{i} \right) \right)$$

• Regularization terms.

1

Optimization Objects

Input: Training set $\{(\boldsymbol{x}_i, \tilde{\boldsymbol{y}}_i)\}_{i=1}^N$; training steps T; estimation step list \mathcal{T} . Output: Optimized parameters θ Initialize $\eta_i = 0, \forall i \in [N]$ mitialize $\boldsymbol{v}_i = \mathbf{1}, \forall i \in [N]$ For t = 1 to T do Estimate the true label as $\boldsymbol{q}_i = \boldsymbol{v}_i \cdot (\eta_i \cdot \hat{\boldsymbol{y}}_i + (1 - \eta_i) \cdot \tilde{\boldsymbol{y}}_i)$. Calculate the loss terms. Update θ . If $t \in \mathcal{T}$ then Estimate $\eta_i, \forall i \in [N]$ End if End for

Empirical Studies

Methods	Random 1	Random 2	Random 3	Aggregate	Worst	Noisy
CE	85.02 ± 0.65	86.46±1.79	85.16 ± 0.61	87.77 ± 0.38	$77.69 {\pm} 1.55$	$55.50 {\pm} 0.66$
Forward	$86.88{\pm}0.50$	$86.14 {\pm} 0.24$	$87.04 {\pm} 0.35$	$88.24 {\pm} 0.22$	79.79 ± 0.46	$57.01 {\pm} 1.03$
Backward	$87.14 {\pm} 0.34$	$86.28{\pm}0.80$	$86.86{\pm}0.41$	88.13±0.29	$77.61 {\pm} 1.05$	$57.14 {\pm} 0.92$
GCE	$87.61 {\pm} 0.28$	$87.70 {\pm} 0.56$	$87.58{\pm}0.29$	$87.85 {\pm} 0.70$	$80.66{\pm}0.35$	$56.73 {\pm} 0.30$
Peer Loss	89.06±0.11	$88.76 {\pm} 0.19$	$88.57{\pm}0.09$	$90.75 {\pm} 0.25$	$82.53 {\pm} 0.52$	57.59 ± 0.61
VolMinNet	$88.30{\pm}0.12$	$88.27 {\pm} 0.09$	$88.19{\pm}0.41$	89.70 ± 0.21	$80.53 {\pm} 0.20$	$57.80{\pm}0.31$
F-div	$89.70{\pm}0.40$	89.79±0.12	$89.55 {\pm} 0.49$	$91.64 {\pm} 0.34$	$82.53 {\pm} 0.52$	$57.10 {\pm} 0.65$
ELR	$91.46{\pm}0.38$	$91.61{\pm}0.16$	$91.41 {\pm} 0.44$	$92.38 {\pm} 0.64$	$83.58 {\pm} 1.13$	$58.94 {\pm} 0.92$
РМ	85.12 ± 2.90	$87.55 {\pm} 0.13$	84.83 ± 3.18	$88.78{\pm}0.95$	$84.83 {\pm} 1.13$	$29.87 {\pm} 0.08$
CAL	90.93±0.31	$90.75 {\pm} 0.30$	$90.74 {\pm} 0.24$	$91.97{\pm}0.32$	$85.36{\pm}0.16$	$61.73 {\pm} 0.42$
CORES	89.66 ± 0.32	89.91 ± 0.45	89.79 <u>±</u> 0.50	91.23 ± 0.11	$83.60{\pm}0.53$	61.15 ± 0.73
π -LR (Ours)	92.02 ± 0.32	91.96±0.28	92.09±0.12	92.99±0.24	86.76 ± 0.42	62.73±0.46

Robust against realistic label noise

Insensitive to hyper-parameters

Low time and space overhead

 π -LR outperforms compared SOTA methods and keeps efficient in both time and space.

Conclusions

- Take Home Message:
 - Estimating the confusing probability helps modeling IDN label noise.
 - π -LR shows robustness against realistic label noise and keeps efficient.
- Future Directions:
 - Better optimization process of the instance transition ratio v_i
 - Expand to other weakly-supervised learning scenarios.

Thank you!

Q&A

Contact me: hehy@lamda.nju.edu.cn

