

Probabilistic Instance-dependent Label Refinement for Noisy Label Learning

Hao-Yuan He, Yu Liu, Ren-Biao Liu, Zheng Xie and Ming Li

Learning from Noisy Examples

For dataset $\{(m{x}_i, ilde{m{y}}_i)\}_{i=1}^N$, the given label $ilde{m{y}}$ could be noisy.

Figure 1. Classification with noisy supervision.

The previous researchers assume that the noise is class-dependent, i.e., there exists a matrix T that models the transition between noisy and clean labels [1]. However, this is not realistic in the real world.

Highlights

- Estimating the confusing probability helps modeling IDN label noise; π -LR assigns a probability η_i to each instance, showing how IDN affects true labels.
- π -LR shows robustness against both realistic and synthetic label noise, while remaining efficient in time and space.

π -LR: Probabilistic Instance-dependent Label Refinement

Input: Training set $\{(x_i, \tilde{y}_i)\}_{i=1}^N$; training steps T; estimation step list \mathcal{T} . **Output**: Optimized parameters θ Initialize $\eta_i = 0, \forall i \in [N]$ Initialize $\boldsymbol{v}_i = \boldsymbol{1}, \forall i \in [N]$ For t = 1 to T do

Source from Wikipedia.

Figure 2. Realistic label noise. *Confusing* instances are more likely to be misclassified.

Main idea We model the refined label q_i as: $\boldsymbol{q}_i = \boldsymbol{v}_i \cdot (\eta_i \cdot \hat{\boldsymbol{y}}_i + (1 - \eta_i) \cdot \tilde{\boldsymbol{y}}_i),$ (1)where \hat{y}_i and $ilde{y}_i$ is the model's prediction and the noisy label, $v_i \in \mathbb{R}^c$ is instance

transition ratio which reflects the shift of class distribution of label noise, and η_i is the confusing probability of the i-th instance.

Estimate the true label as $\boldsymbol{q}_i = \boldsymbol{v}_i \cdot (\eta_i \cdot \hat{\boldsymbol{y}}_i + (1 - \eta_i) \cdot \tilde{\boldsymbol{y}}_i).$ Calculate the loss terms, ref (4) (5) and (6). Update θ . If $t \in \mathcal{T}$ then Estimate $\eta_i, \forall i \in [N]$ End if End for

Algorithm 1. Overall algorithm of π -LR.

Estimation of Confusing Probabilities

Figure 3. Estimation of confusing probabilities. Non-confusing samples are typically closer to the class center. Thus, we can use Gaussian mixture models for estimation.

Empirical Studies

Instance-dependent Noise (IDN) Modeling

Setup. Consider a dataset of training samples $\{(x_i, \tilde{y}_i)\}_{i=1}^N$, where each sample is assoicated with a true label y_i . The label space is $\{z^{\top}z = 1 \mid z \in \{0,1\}^c\}$.

Modeling. The estimated true label $\boldsymbol{q}_i = \left[\Pr(\boldsymbol{y}_i^1 = 1 \mid \boldsymbol{x}_i), ..., \Pr(\boldsymbol{y}_i^c = 1 \mid \boldsymbol{x}_i)\right]^{\top}$. We first consider $q_i^j = \Pr(y_i^j = 1 \mid x_i)$, by Bayes formula:

$$\Pr\left(\boldsymbol{y}_{i}^{j}=1 \mid \boldsymbol{x}_{i}\right) = \frac{\Pr\left(\tilde{\boldsymbol{y}}_{i}, \boldsymbol{y}_{i}^{j}=1 \mid \boldsymbol{x}_{i}\right)}{\Pr\left(\tilde{\boldsymbol{y}}_{i} \mid \boldsymbol{y}_{i}^{j}=1, \boldsymbol{x}_{i}\right)} = \underbrace{\Pr\left(\tilde{\boldsymbol{y}}_{i} \mid \boldsymbol{x}_{i}\right)}_{\text{denote as } \psi_{i}} \cdot \frac{\Pr\left(\tilde{\boldsymbol{y}}_{i}^{j}=1 \mid \boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right)}{\Pr\left(\tilde{\boldsymbol{y}}_{i} \mid \boldsymbol{y}_{i}^{j}=1, \boldsymbol{x}_{i}\right)} \cdot (2)$$

Using the concept of confusing probability, expand $\Prig(ilde{m{y}}_i^j=1\,ig|\,m{y}_i,m{x}_iig)$ as follows:

$$\Pr\left(\boldsymbol{y}_{i}^{j}=1 \mid s_{i}=0, \tilde{\boldsymbol{y}}_{i}, \boldsymbol{x}_{i}\right) \cdot (1-\eta_{i}) + \Pr\left(\boldsymbol{y}_{i}^{j}=1 \mid s_{i}=1, \tilde{\boldsymbol{y}}_{i}, \boldsymbol{x}_{i}\right) \cdot \eta_{i}.$$
 (3)

The first term refers to the case that the sample x_i is not confusing, which euquility $\mathbb{I}ig(ilde{m{y}}_i^j=m{y}_i^jig)= ilde{m{y}}_i^j$. The second term can be represented as the model's prediction $\hat{m{y}}_i^j$. Combine the above equations, and use the notation v_i^j to represent the ratio between $\Pr(\tilde{y} | x_i)$ and $\Pr(\tilde{y}_i | y_i^j = 1, x_i)$, we finally get (1).

Loss terms. The loss terms are consist of three parts:

Methods	Random 1	Random 2	Random 3	Aggregate	Worst	Noisy
CE	85.02 ± 0.65	86.46 ± 1.79	85.16 ± 0.61	87.77 ± 0.38	$77.69 {\pm} 1.55$	$55.50 {\pm} 0.66$
Forward	$86.88 {\pm} 0.50$	86.14 ± 0.24	$87.04 {\pm} 0.35$	88.24 ± 0.22	79.79 ± 0.46	57.01 ± 1.03
Backward	87.14 ± 0.34	86.28 ± 0.80	$86.86 {\pm} 0.41$	88.13 ± 0.29	$77.61 {\pm} 1.05$	57.14 ± 0.92
GCE	$87.61 {\pm} 0.28$	$87.70 {\pm} 0.56$	$87.58 {\pm} 0.29$	$87.85 {\pm} 0.70$	$80.66 {\pm} 0.35$	$56.73 {\pm} 0.30$
Peer Loss	89.06 ± 0.11	$88.76 {\pm} 0.19$	$88.57 {\pm} 0.09$	$90.75 {\pm} 0.25$	$82.53 {\pm} 0.52$	$57.59 {\pm} 0.61$
VolMinNet	88.30 ± 0.12	$88.27 {\pm} 0.09$	88.19±0.41	89.70 ± 0.21	$80.53 {\pm} 0.20$	$57.80 {\pm} 0.31$
F-div	$89.70 {\pm} 0.40$	89.79±0.12	$89.55 {\pm} 0.49$	$91.64 {\pm} 0.34$	$82.53 {\pm} 0.52$	$57.10 {\pm} 0.65$
ELR	$91.46 {\pm} 0.38$	$91.61 {\pm} 0.16$	91.41 ± 0.44	$92.38 {\pm} 0.64$	83.58 ± 1.13	$58.94 {\pm} 0.92$
PM	85.12 ± 2.90	87.55 ± 0.13	84.83 ± 3.18	88.78 ± 0.95	84.83 ± 1.13	$29.87 {\pm} 0.08$
CAL	$90.93 {\pm} 0.31$	$90.75 {\pm} 0.30$	$90.74 {\pm} 0.24$	$91.97 {\pm} 0.32$	$85.36 {\pm} 0.16$	$61.73 {\pm} 0.42$
CORES	89.66 ± 0.32	89.91 ± 0.45	89.79 ± 0.50	91.23 ± 0.11	83.60 ± 0.53	61.15 ± 0.73
π -LR (Ours)	92.02 ± 0.32	91.96 ± 0.28	92.09 ± 0.12	92.99 ± 0.24	86.76 ± 0.42	62.73 ± 0.46

Table 1. Experiments on CIFAR-N, comparision with SOTAs.

Classification loss with refined label:

$$\mathcal{L}_{c} = \frac{1}{N} \sum_{i \in [N]} \text{CrossEntropy}(\boldsymbol{q}_{i}, \hat{\boldsymbol{y}}_{i}). \tag{4}$$

• Expectation-maximization(EM) for updating v_i :

$$\mathcal{L}_v = -\frac{1}{N \cdot c} \sum_{i \in [N]} \sum_{j \in [c]} \boldsymbol{q}_i^j \log(\psi_i \cdot [\eta_i \cdot \hat{\boldsymbol{y}}_i + (1 - \eta_i) \cdot \tilde{\boldsymbol{y}}_i]).$$
(5)

• Regularization terms, e.g., ELR loss [2]:

$$\mathcal{L}_{r} = \frac{1}{N} \sum_{i \in [N]} \log(1 - \langle \hat{\boldsymbol{y}}_{i}, \boldsymbol{t}_{i} \rangle).$$
(6)

Figure 4. Efficiency analysis: π -LR has low time and space complexity.

Figure 5. Sensitivity analysis: π -LR maintains good performance under various settings.

- [1] G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, "Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2233–2241.
- [2] S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda, "Early-Learning Regularization Prevents Memorization of Noisy Labels," in Advances in Neural Information Processing Systems 33, 2020, pp. 20331–20342.

Contact: <u>hehy@lamda.nju.edu.cn</u>

ACML 2024 (Journal Track)