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Learning from Noisy Examples

For dataset {(x;,, ﬂz)}N

i=1’
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the given label y could be noisy.

|
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Probabilistic Instance-dependent Label Refinement for Noisy Label Learning
Hao-Yuan He, Yu Liu, Ren-Biao Liu, Zheng Xie and Ming Li

Figure 1. Classification with noisy supervision.

The previous researchers assume that the noise is class-dependent, i.e., there exists a
matrix 1" that models the transition between noisy and clean labels [1]. However, this

is not realistic in the real world.

Source from Wikipedia.

Figure 2. Realistic label noise. Confusing instances are more likely to be misclassified.
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Highlights
* Estimating the confusing probability helps modeling IDN label noise; m-LR as-
signs a probability i, to each instance, showing how IDN affects true labels.

* 7-LR shows robustness against both realistic and synthetic label noise, while
remaining efficient in time and space.

m-LR: Probabilistic Instance-dependent Label Refinement

Input: Training set {(x;, gz)}j\il, training steps T'; estimation step list 7.
Output: Optimized parameters 0
Initialize n, = 0, Vi € [N]
Initialize v, = 1, Vi € [N]
Fort{ =1to1 do
Estimate the true labelas q, = v, - (n, -y, + (1 —n,) - Y,).
Calculate the loss terms, ref (4) (5) and (6).
Update 0.
If { € J then
Estimate n,, Vi € [N]
End if
End for

Algorithm 1. Overall algorithm of 7-LR.

Estimation of Confusing Probabilities

Main idea
We model the refined label g; as:

q7;:vi'(77¢'?37:‘|‘(1_77z’)'?3i)7

where ¢, and gy, is the model’s prediction and the noisy label, v, € R is instance
transition ratio which reflects the shift of class distribution of label noise, and 7,

is the confusing probability of the 2-th instance.
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Figure 3. Estimation of confusing probabilities. Non-confusing samples are typically
closer to the class center. Thus, we can use Gaussian mixture models for estimation.

Instance-dependent Noise (IDN) Modeling

Setup. Consider a dataset of training samples {(x,, gi)}fll, where each sample is
assoicated with a true label y,. The label spaceis {z'z =1z € {0,1}°}.

Modeling. The estimated true label g, = |Pr(y; =1|x;),...,Pr(yf = 1] mz)]T

We first consider qg = Pr(y;g =1 | wz) by Bayes formula:

Pl"(?]iay?g =1 | mz)
Pr(gi yf — 17mi)

Pr(yg =1 | :132) —

= Pr(y, [z;) -
denote as v,
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Pl"(?)g =1 | Yi» wz)

~

Y;

Using the concept of confusing probability, expand Pr(g’)g =1 ‘ Y., mz) as follows:

Pr(y,ff =1 ‘ S; = Oagz’awi) (1 —mn;) + Pr(yg =1 | i = 17?37;7%) M- (3)

The first term refers to the case that the sample x, is not confusing, which euqgals N T [

]I(gf = yf) = g'jf The second term can be represented as the model’s prediction ). o]
Combine the above equations, and use the notation v; to represent the ratio between 8

Pr(g| x;) and Pr(g,

y! =1, a:i), we finally get (1).

Loss terms. The loss terms are consist of three parts:

e (Classification loss with refined label:

1
L, = N Z CrossEntropy(q;, 9, ).

1€|N]

* Expectation-maximization(EM) for updating v,:

1
L, =
N -c

i€[N] j€lc]

e Regularization terms, e.g., ELR loss [2]:

1 .
1€|[N]
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Z Z qg log(; < [m; - 9; + (1 —m;) -

Methods Random 1 Random 2 Random 3 Aggregate Worst Noisy
CE 85.02+0.65 86.46+1.79 85.164+0.61 87.7740.38 77.691+1.55 55.5040.66
Forward 36.88+0.50 86.1440.24 87.0440.35 88.244-0.22 79.7940.46 57.0111.03
Backward 87.14+4+0.34 86.2840.80 86.864+0.41 88.1340.29 77.614+1.05 57.144-0.92
GCE 87.61+0.28 87.704+0.56 87.5840.29 87.854+0.70 80.6610.35 56.7340.30
Peer Loss 39.06+0.11 88.76+0.19 88.574+0.09 90.7540.25 82.5340.52 57.594-0.61
VolMinNet 88.30+0.12 88.274-0.09 88.1940.41 89.70+0.21 80.534-0.20 57.804-0.31
F-div 39.70+0.40 89.7940.12 89.5540.49 91.64+4-0.34 82.5340.52 57.1010.65
ELR 91.464+0.38 91.614+0.16 91.41+0.44 92.383+0.64 83.583+1.13 58.94+0.92
) ' (2) PM 85.12+2.90 87.55+0.13 84.834+3.18 38.78+0.95 84.83+1.13 29.8740.08
CAL 90.9340.31 90.7540.30 90.74+0.24 91.97+0.32 85.36+0.16 61.73+0.42
CORES 89.66+0.32 89.91+0.45 89.7940.50 91.234-0.11 83.60+0.53 61.154+0.73
n-LR (Ours) 92.02+0.32 91.964+0.28 92.0940.12 92.9940.24 86.76+0.42 62.7340.46

Table 1. Experiments on CIFAR-N, comparision with SOTAs.

Relative Time Cost (CIFAR-10N) Relative Time Cost (CIFAR-100N) Relative Space Cost (CIFAR-10N) Relative Space Cost (CIFAR100-N)
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(4) Figure 4. Efficiency analysis: m-LR has low time and space complexity.
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Figure 5. Sensitivity analysis: m-LR maintains good performance under various settings.
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