
Learning-augmented smooth integer programs with

PAC-learnable oracles

Hao-Yuan He1,2 and Ming Li1,2

1National Key Laboratory for Novel Software Technology, Nanjing University
2School of Artificial Intelligence, Nanjing University

{hehy, lim}@lamda.nju.edu.cn

Preprint

Abstract

This paper investigates learning-augmented algorithms for smooth integer programs,
covering canonical problems such as MAX-CUT and MAX-k -SAT. We introduce a frame-
work that incorporates a predictive oracle to construct a linear surrogate of the objective,
which is then solved via linear programming followed by a rounding procedure. Crucially,
our framework ensures that the solution quality is both consistent and smooth against
prediction errors. We demonstrate that this approach effectively extends tractable ap-
proximations from the classical dense regime to the near-dense regime. Furthermore, we
go beyond the assumption of oracle existence by establishing its PAC-learnability. We
prove that the induced algorithm class possesses a bounded pseudo-dimension, thereby
ensuring that an oracle with near-optimal expected performance can be learned with
polynomial samples.

1

1 Introduction

Combinatorial optimization stands as a cornerstone of computer science, operations research,
and numerous scientific disciplines. A central objective within this domain is the maximiza-
tion of a function over a discrete feasible set, a formulation that encapsulates canonical
challenges such as MAX-CUT and MAX-k -SAT. However, the inherent computational in-
tractability, i.e., NP-hard, of these problems typically precludes the existence of efficient exact
algorithms. While approximation algorithms offer an alternative by trading optimality for
polynomial-time solvability, many fundamental problems are APX-hard [PY91] (e.g., MAX-
k -SAT), implying that they do not admit a polynomial-time approximation scheme (PTAS)
unless P = NP [H̊as01].

Learning-augmented algorithms, or algorithms with predictions, recently have emerged
as a promising paradigm [LV21; MV22]. The core observation is that practical instances
rarely exhibit the pathological structures found in worst-case scenarios; instead, they typically
adhere to underlying distributions or recurring patterns. By utilizing historical data, one can
leverage a predictive model—an oracle—to guide algorithmic decisions. This data-driven
perspective has yielded provable performance gains in domains ranging from caching [LV21]
and scheduling [KPS18] to routing [BEX22; Bam+23], enabling algorithms to surpass classical
worst-case bounds while retaining robustness against prediction errors.

In this work, we consider the smooth integer programs, i.e., maximization of an n-variate
degree-d polynomial p(x) subject to binary constraints:

max
x

p(x)

s.t. x ∈ {0, 1}n.
(d-IP)

This problem was first investigated by Arora, Karger, and Karpinski [AKK99] and is
of fundamental importance: it encompasses the entire class of MAX-SNP problems [PY91].
This class constitutes a substantial subset of NP-hard problems, including canonical graph
partitioning tasks (e.g., MAX-CUT and MAX-HYPERCUT), as well as general Boolean
constraint satisfaction problems (e.g., MAX-k -SAT and MAX-k -CSP), which are known to
be APX-hard.

Prior Works Arora, Karger, and Karpinski [AKK99] developed a PTAS for smooth integer
programs in the dense regime, where the optimal value of (d-IP) is Ω(nd). Their approach
employs exhaustive sampling : for a given precision ϵ, the algorithm selects a random subset of
O(logn/ϵ2) variables. It then enumerates all possible assignments for this subset—incurring
a time complexity of 2O(logn/ϵ2) = nO(1/ϵ2)—and determines the remaining variables via
linear programming followed by randomized rounding. They demonstrated that this approach
guarantees an approximation gap of O(ndϵ). Recently, in the context of learning-augmented
algorithms, Bampis, Escoffier, and Xefteris [BEX24] introduced a parsimonious oracle that
predicts the assignments of the O(log n/ϵ3) sampled variables, thereby improving algorithmic
efficiency while guaranteeing an approximation gap of O(nd(ϵ + ε)), where ε denotes the
prediction error of the oracle.

2

We extend the setting of Bampis, Escoffier, and Xefteris [BEX24] by transitioning from
a parsimonious oracle to a full information oracle. The rationale is intuitive: whereas the
parsimonious oracle predicts only a subset of variables to align with the seminal PTAS ap-
proach, a full-information oracle predicting all n variables offers richer guidance and more
natural in machine learning deployment.

Technically, for smooth integer programs, the objective p(x) exhibits β-smoothness (see
definition 2.1), which is central to our framework and offers two primary advantages:

• Robust linearization (see theorem 2.12): We leverage the β-smoothness to construct a linear
surrogate that locally approximates the polynomial objective around the oracle prediction
x̂. Specifically, we decompose the objective into p(x) ≈ c +

∑
i∈[n] xipi(x̂). We establish

that the approximation error is strictly bounded by a term dependent on β and the pre-
diction quality. This facilitates a linear programming relaxation of (d-IP) whose optimal
value provably tracks that of the original problem.

• Lossless rounding (Lemma 3.3 in [AKK99]): The smoothness of the objective further guar-
antees that an optimal fractional solution of the relaxed linear program can be rounded
to an integral solution with negligible degradation in the objective value. Notably, for
multilinear objectives, a greedy deterministic rounding strategy can be employed to obtain
an integral solution with a non-decreasing objective value (see theorem 2.15).

Based on these properties, our framework comprises three stages: (1) given an instance
of problem π, querying the oracle for a solution f(π) = x̂; (2) solving a linear program
relaxation obtained by linearizing the objective around x̂; and (3) rounding the fractional
solution y to an integral output z.

1.1 Our Contributions

Our analysis shows that the algorithm’s performance is tightly coupled to the quality of
the oracle. Let x∗ denote an optimal solution to (d-IP) and define the prediction error as
ε = ∥x̂− x∗∥1. We prove that, with high probability:

p(z) ≥ p(x∗)−O(nd−1/2√ε)− Õ(nd−1/2).

The first error term, O(nd−1/2√ε), quantifies the degradation attributable to prediction in-
accuracy, while the second term, Õ(nd−1/2), represents the irreducible error arising from the
rounding procedure. Significantly, in the case of multilinear objectives, this rounding error
can be eliminated via a deterministic greedy rounding strategy (see theorem 2.15).

By utilizing a full-information oracle, our guarantee broadens the applicability of the
framework from the dense regime of Arora, Karger, and Karpinski [AKK99] and Bampis,
Escoffier, and Xefteris [BEX24] to the near-dense regime, where the optimum scales as
Ω(nd−1/2+ξ) for some ξ ∈ (0, 12]. In this regime, the approximation ratio of our algorithm is

1 − Õ(
√
ε/nξ). Consequently, our algorithm is both consistent, converging to optimality as

the prediction error vanishes, and smooth, degrading gracefully as the error increases; thus, it
offers substantial improvements over worst-case bounds even when predictions are imperfect.

3

Furthermore, by parallelizing with a state-of-the-art approximation algorithm and pick the
better one, we readily equip robustness against oracle errors.

A critical yet often overlooked aspect of learning-augmented design is the learnability of
the oracle. Existing works often assume an oracle exists, whereas we establish its learn-
ability. Leveraging the PAC-learning framework for algorithm selection [GR17], we analyze
the sample complexity required to train our oracle. We demonstrate that if the hypothesis
class of predictors F has bounded VC-dimension coordinate-wise, the induced algorithm class
possesses finite pseudo-dimension. This implies that an empirical risk minimization (ERM)
procedure can learn an oracle with near-optimal expected performance under polynomial sam-
ple complexity.

To summarize, our contributions are as follows:

1. We present a learning-augmented framework for smooth integer programs with tighter
theoretical guarantees (see theorem 2.16). Our approach linearizes the objective around
a predictive oracle and then applies randomized rounding, which enables us to handle a
broad class of MAX-SNP problems. Moreover, by leveraging a full-information oracle,
we eliminate the sampling phase of Arora, Karger, and Karpinski [AKK99] and Bampis,
Escoffier, and Xefteris [BEX24] and obtain an additive error of Õ(nd−1/2), improving upon
the O(nd) error of prior work and extending the valid regime from dense to near-dense
instances.

2. We establish the learnability of the oracle within the PAC framework (see theorem 3.3).
Specifically, we show that the induced algorithm class has finite pseudo-dimension, which
implies that the oracle is PAC-learnable with polynomial sample complexity.

Organization We present our learning-augmented framework in section 2. In section 3, we
establish the learnability of the oracle within the PAC framework. In section 4, we illustrate
applications of our framework to MAX-CUT and MAX-k -SAT as examples. In section 5, we
offer concluding remarks. Supplementary materials are provided in the appendix, including
an extended discussion of related work, technical details, and an extension of our framework
to (d-IP) with degree-d polynomial constraints.

2 Approach

This section presents a learning-augmented approximation framework for Boolean integer
programming with smooth polynomial objectives [AKK99]. We begin by introducing the
preliminaries, followed by a description of the framework’s mechanism and theoretical guar-
antees, initially for the quadratic case and subsequently generalized to higher orders.

2.1 Preliminaries

Let [n] = {1, . . . , n}. We denote the closed interval [a − b, a + b] by a ± b. Throughout this
paper, unless otherwise specified, x ∈ {0, 1}n represents an n-dimensional Boolean vector,
and e denotes the base of the natural logarithm.

4

Definition 2.1 (β-smooth). An n-variate polynomial p(x) of degree d is β-smooth if there
exists a constant β > 0 such that for every 0 ≤ l ≤ d, the absolute value of the coefficient for
any degree-l monomial in the expansion of p(x) is bounded by βnd−l.

A wide array of fundamental optimization problems can be formulated as optimizing
smooth polynomial objectives. We provide two illustrative examples below.

Example 1. Given an undirected graph G = (V,E), MAX-CUT partitions V to maximize
the number of crossing edges. We define the objective function over x ∈ {0, 1}n, with xi = 1

denoting that vertex i is in the subset, as p(x) =
∑

i∈[n] xi

(∑
(i,j)∈E(1− xj)

)
, which is

2-smooth.

Example 2. Given a formula in conjunctive normal form where each clause has exactly k
literals, MAX-k -SAT maximizes the number of satisfied clauses. The objective function is
p(x) =

∑
C∈C

(
1−

∏
i∈C− xi

∏
i∈C+(1− xi)

)
, where C+ and C− denote indices of positive

and negative literals in clause C. This degree-k polynomial is 4k-smooth.

Indeed, the entire MAX-SNP class can be formulated in the form of (d-IP) and exhibits
β-smoothness by employing a formulation analogous to that of MAX-k -SAT; we defer these
details to section F in appendix.

Definition 2.2 (Problem Regimes). Consider a discrete optimization problem with a degree-
d polynomial objective. The instance is termed dense if its optimal objective value is
Ω(nd) [AKK99], near-dense if the optimum scales as Ω(nd−1/2+ξ) for some ξ ∈ (0, 1/2].

This classification aligns with problem-specific conventions. For instance, a dense graph
possesses Ω(n2) edges, while a dense 3-SAT formula contains Ω(n3) clauses.

An n-variate degree-d β-smooth polynomial p(x) can be decomposed while preserving the
β-smoothness property.

Lemma 2.3. Let p(x) be an n-variate β-smooth polynomial of degree d. Then, there exist a
constant c and degree-(d− 1) β-smooth polynomials {pj(x)}j∈[n] such that

p(x) = c+

n∑
j=1

xj pj(x).

Note that this decomposition may not be unique, however it does not affect our analy-
sis. Repeated application of this decomposition yields the following generalized structural
property for smooth polynomials.

Lemma 2.4. Let p(x) be an n-variate β-smooth polynomial of degree d. For any integer
l ∈ [d] and any index tuple I = (i1, . . . , id−l) ∈ [n]d−l, the polynomial pI(x) admits the
following decomposition:

pI(x) = cI +
∑
j∈[n]

xj · pI,j(x).

5

Utilizing this decomposition, we can establish quantitative bounds on the magnitude of
the polynomial. Based on the definition of β-smoothness, we derive the following recursive
bound for the components of the hierarchical decomposition.

Corollary 2.5. Let p(x) be an n-variate β-smooth polynomial of degree d. For any fixed
index tuple I = (i1, . . . , id−l) and any x ∈ {0, 1}n, the component pI(x) satisfies

|pI(x)| ≤ β(l + 1)nl.

Finally, we recall a global bound on the value of smooth polynomials established in prior
work.

Lemma 2.6 (Lemma 3.2, [AKK99]). Let p(x) be an n-variate β-smooth polynomial of degree
d. If n > d, then for any x ∈ [0, 1]n, it holds that |p(x)| ≤ 2βend.

2.2 The Quadratic Case

Given an n-variate degree-2 β-smooth polynomial p(x), consider the following problem:

max
x

p(x)

s.t. x ∈ {0, 1}n.
(2-IP)

This problem is known to be NP-hard, as it captures problems such as MAX-CUT (see
example 1). Since p(x) is a quadratic objective, it can be expanded using lemma 2.4:

p(x) =
∑
i∈[n]

xi · pi(x) + c,

where pi(x) is a linear function and c is a constant. To derive a tractable approximation, we
linearize the objective function. Specifically, we relax (2-IP) to the following formulation:

max
x

c+
∑
i∈[n]

xi · ρi

s.t. ρi − δ ≤ pi(x) ≤ ρi + δ,

x ∈ [0, 1]n.

(2-LP)

where ρi is an auxiliary variable approximating pi(x) within a tolerance parameter δ. Since
pi(x) is linear in x, this relaxation is a linear program and is solvable in polynomial time.
Moreover, when δ = 0 and ρi = pi(x

∗) for all i, the optimal solution of (2-LP) coincides with
that of (2-IP). The remaining challenge lies in determining the appropriate approximation ρi
and tolerance δ.

6

2.2.1 Oracle-guided Relaxation

Given a prediction x̂ provided by an oracle, a natural strategy is to set ρi = pi(x̂) for all
i ∈ [n]. With ρi fixed, it suffices to choose δ ≥ maxi∈[n] |pi(x̂) − pi(x

∗)| to guarantee the
feasibility of the optimal solution x∗ for the relaxed problem. By exploiting the β-smoothness
of p(x), we can bound this deviation as follows.

Lemma 2.7. Let p(x) be an n-variate β-smooth polynomial of degree 2 with the decomposition
p(x) =

∑
i∈[n] xipi(x) + c. For any two binary vectors x∗, x̂ ∈ {0, 1}n, let ε = ∥x∗ − x̂∥1.

Then, for any i ∈ [n], the deviation of the linear component is bounded by:

|pi(x̂)− pi(x
∗)| ≤ β

√
n
√
ε.

Accordingly, we set the tolerance to δ := β
√
n
√
ε. Note that the value of ε is initially

unknown. However, since x ∈ {0, 1}n, ε is an integer bounded by n. Consequently, we
can enumerate all possible values of ε and solve (2-LP) to identify the best solution, while
preserving polynomial time complexity. With the coefficients ρi and tolerance δ determined,
we proceed to quantify the relaxation gap.

2.2.2 Analysis of the Relaxation Gap

Let y denote an optimal solution to the relaxed problem formulated in (2-LP). We now
demonstrate that (2-LP) serves as an effective approximation for (2-IP) by establishing that
p(y) closely approximates p(x∗). By leveraging the feasibility and the optimality of y within
(2-LP), we derive the following lower bound:

p(y) ≥ c+
∑
i∈[n]

yi(ρi − δ)

≥ c+
∑
i∈[n]

x∗i ρi −
∑
i∈[n]

yiδ

≥ c+
∑
i∈[n]

x∗i (pi(x
∗)− δ)− nδ

≥ p(x∗)− 2nδ.

(1)

The first inequality is from the feasibility of y. The second inequality is from the optimality
of y. The third inequality is from the feasibility of x∗, alongside the bound

∑
i∈[n] yi ≤ n.

Consequently, substituting δ = β
√
n
√
ε yields:

p(y) ≥ p(x∗)− 2βn3/2√ε. (2)

Remark 2.8. The tolerance parameter δ governs the trade-off between feasibility and relax-
ation tightness. An overly small value may render the optimal integer solution x∗ infeasible,
whereas an excessively large value widens the relaxation gap, which scales linearly with δ.
Our choice δ = β

√
n
√
ε guarantees feasibility while bounding the gap by O(βn3/2√ε).

7

2.2.3 Randomized Rounding

The optimal solution y to the relaxation (2-LP) is typically fractional. To recover an integral
solution, we round the fractional vector y to a binary one. We employ randomized rounding,
a standard technique widely used in approximation algorithms [RT87; GW95]. Formally,
each variable zj is independently set to 1 with probability yj and to 0 otherwise. We further
demonstrate that the rounded solution z preserves the objective value with high probability,
i.e., p(z) ≈ p(y).

Theorem 2.9. Let p(x) be an n-variate quadratic β-smooth polynomial. Let y ∈ [0, 1]n be a
fractional vector, and let z ∈ {0, 1}n be the integral vector derived via independent randomized
rounding with Pr[zi = 1] = yi. For any k ≥ 1, with probability at least 1−4/nk, the following
bound holds:

|p(z)− p(y)| ≤ 3nβ

√
k + 1

2

√
n lnn. (3)

Remark 2.10. The rounding error in the quadratic case scales as O(n3/2
√
lnn), i.e., Õ(n3/2),

which is almost of the same magnitude as the relaxation gap in (2) for a fixed oracle. Notably,
this error is independent of the oracle’s quality, implying that (3) captures the intrinsic cost
of the randomized rounding strategy, which cannot be reduced by improving the oracle’s
precision. Furthermore, the randomized rounding procedure can be derandomized using the
method of conditional expectations [Rag88], leading to a deterministic rounding procedure
with the same error bound, at the cost of a polynomial increase in time complexity.

2.2.4 Comprehensive Guarantee

We now establish the performance guarantee by combining the relaxation gap (2) with the
rounding error (3).

Theorem 2.11. Let x∗ be the optimal solution to (2-IP), and let z be the integral solution
obtained via randomized rounding from the fractional solution to (2-LP). With probability at
least 1− 4n−k, we have

p(z) ≥ p(x∗)− 2βn3/2√ε− 3βn3/2

√
k + 1

2
lnn . (4)

This result holds for several classes of quadratic objectives, such as MAX-CUT, MAX-
DICUT, and MAX-2 -SAT. For near-dense problem where p(x∗) = Ω(n3/2+ξ) with some
ξ ∈ (0, 12], this yields a multiplicative approximation ratio of 1− Õ(

√
ε/nξ).

2.3 Generalization to Higher Orders

We now extend our analysis to the general case, specifically, for an n-variate β-smooth poly-
nomial p(x) of degree d:

max
x

p(x)

s.t. x ∈ {0, 1}n.
(d-IP)

8

Analogous to the quadratic setting (section 2.2), we relax this integer program to a linear
programming formulation by leveraging an oracle prediction x̂. The primary challenge stems
from the decomposition: while the identity p(x) = c +

∑
i∈[n] xi · pi(x) remains valid, the

coefficient functions pi(x) are generally non-linear; specifically, each pi(x) is a degree-(d− 1)
β-smooth polynomial. Consequently, a single decomposition step reformulates the primary
optimization problem (d-IP) as:

max
x

c+
∑
j∈[n]

xj · ρj

s.t. pj(x) ∈ ρj ± δj ∀j ∈ [n]

x ∈ {0, 1}n

Although the objective function becomes linear in xj and the auxiliary variables ρj , the
constraints pj(x) ∈ ρj ± δj remain non-linear. To systematically address the non-linearity,
we apply the decomposition recursively. For any valid index tuple I encountered during
the process, we define the linear approximation qI(x) of the polynomial term pI(x) as:
qI(x) = cI +

∑
j∈[n] xj · pI,j(x̂). The recursive procedure replaces each non-linear constraint

on pI(x) with linear constraints derived from qI(x), continuing until the system is fully lin-
earized. Let I denote the set of all valid index tuples generated by this process. Using these
approximations, we formulate the relaxed problem as:

max
x

c+
∑
j∈[n]

xj · pj(x̂)

s.t. qI(x) ∈ pI(x̂) ± δI ∀I ∈ I
x ∈ [0, 1]n.

(d-LP)

Since both the objective function and constraints in (d-LP) are linear, the problem can
be solved efficiently using standard linear programming solvers. The remaining challenge is
to determine the appropriate tolerance δI for the constraints in (d-LP).

2.3.1 Oracle-guided Relaxation

Analogous to the quadratic case, we define the tolerance parameter δI based on the deviation
of the optimal solution x∗ from the oracle prediction x̂:

δI := |qI(x∗)− qI(x̂)| = |qI(x∗)− pI(x̂)| .

In the case where |I| = d− 1 (i.e., the linear terms), because |cI,j | ≤ β, corollary 2.5 implies:

δI =

∣∣∣∣∣∣
∑
j∈[n]

(x∗I,j − x̂I,j) · cI,j

∣∣∣∣∣∣ ≤ β
√
n
√
ε.

Next, for the general case where |I| < d − 1, recall that pI,j(x̂) is a degree-(d − |I| − 1)
β-smooth polynomial. Expanding the expression and applying lemma 2.6, we obtain the

9

following bound:

δI =

∣∣∣∣∣∣
∑
j∈[n]

(x∗I,j − x̂I,j) · pI,j(x̂)

∣∣∣∣∣∣ ≤ 2βend−|I|−1/2√ε.

These settings ensure that the true optimal solution satisfies the relaxed constraints.

2.3.2 Analysis of the Relaxation Gap

We now bound the relaxation gap, defined as the discrepancy between the optimal value of
the relaxed problem and the original integer program.

Theorem 2.12. Let y be the optimal solution to the relaxed problem (d-LP) and x∗ be the
optimal solution to the original integer program (d-IP). The relaxation gap is bounded by:

p(y) ≥ p(x∗)− 2 [2e(d− 2) + 1]βnd−1/2√ε.

Proofsketch. Analogous to the quadratic case gap (2), the gap between p(y) and p(x∗) follows
from the feasibility of x∗ and the optimality of y within (d-LP). In this general setting, the
total error bound consists of the sum of the tolerances δI derived in section 2.3.1 over all
valid indices I. Summing these δI terms yields the final result.

2.3.3 Rounding

To recover an integral solution z from the fractional solution y obtained via (d-LP), we
generally employ independent randomized rounding, analogous to the quadratic case. In this
general setting, the rounding error is bounded by the following concentration inequality.

Theorem 2.13. Let y ∈ [0, 1]n, and let z ∈ {0, 1}n be generated via independent randomized
rounding where Pr[zi = 1] = yi for all i ∈ [n]. Consider an n-variate degree-d polynomial
p(x) that is β-smooth. For any k > d, with probability at least 1− 2d/n k+1−(d−1),

|p(y)− p(z)| ≤
(
1 + 2e (d− 2)

)
β nd−1

√
k+1
2

√
n lnn.

However, theorem 2.13 fails to leverage the fine-grained structure of the objective function.
In particular, when the objective is multilinear, it exhibits structural properties that facilitate
a more effective rounding scheme.

Definition 2.14. A polynomial p is said to be multilinear if it is affine with respect to any
individual variable xk when all other variables are held fixed:

p(x1, . . . , xk, . . . , xn) = a · xk + b,

where a and b are independent of xk.

It is straightforward to verify that the objective functions of both MAX-CUT and MAX-
k -SAT are multilinear. Thus we can employ a greedy deterministic rounding strategy, which
ensures that the objective value is non-decreasing.

10

Theorem 2.15. Let p(x) be a multilinear polynomial. For any fractional solution y ∈ [0, 1]n,
the greedy deterministic rounding procedure yields an integral vector z ∈ {0, 1}n such that:

p(z) ≥ p(y).

Proofsketch. With the multilinearity of p(x), we observe that the objective function is affine
with respect to each variable. Consequently, making a greedy choice at each step guarantees
that the objective value is non-decreasing.

2.3.4 Overall Guarantee

We now synthesize the relaxation gap analysis with the rounding error bounds to derive a
comprehensive approximation guarantee. This result extends the quadratic bound presented
in (4) to polynomials of arbitrary degree d.

Theorem 2.16. Let p(x) be an n-variate, degree-d, β-smooth polynomial. Let y denote the
optimal solution to the relaxed problem (d-LP), and let ε = ∥x∗ − x̂∥1 quantify the L1 error
of the oracle prediction. Define the constant η = 2e(d − 2) + 1. With probability at least
1− 2d/nk−d+2, the solution z obtained via randomized rounding satisfies:

p(z) ≥ p(x∗)− 2ηβnd−1/2√ε− ηβnd−1

√
k + 1

2

√
n lnn. (5)

If p(x) is multilinear and z is obtained via the deterministic rounding strategy, then:

p(z) ≥ p(x∗)− 2ηβnd−1/2√ε. (6)

Proof. The proof decomposes the total approximation error into the relaxation gap and the
rounding loss. First, theorem 2.12 bounds the relaxation gap as p(y) ≥ p(x∗)−2ηβnd−1/2√ε.
The inequality (5) follows by combining this result with the high-probability rounding error
bound established in theorem 2.13. For (6), when p(x) is multilinear, theorem 2.15 guarantees
monotonic improvement, i.e., p(z) ≥ p(y). This property eliminates the rounding error term,
yielding the tighter bound in (6).

2.4 Algorithmic Framework

A complete optimization protocol is summarized in algorithm 1. The algorithm first invokes
the learning oracle to obtain a prediction, constructs and solves the linear relaxation, and
finally maps the fractional solution to a valid integer assignment using the specified rounding
strategy.

Complexity Analysis. Although the exact prediction error ε = ∥x̂ − x∗∥1 is typically
unknown, its discrete nature (ranging over {0, . . . , n}) facilitates an exhaustive search. By
enumerating all feasible values of ε, we identify the solution maximizing the objective function.
The overall computational complexity is dominated by the linear programming steps, totaling
O(n · TLP), where TLP denotes the time complexity of the LP solver (one of the best result

11

Algorithm 1: Learning-augmented optimization framework

Input : Problem instance π ∈ Π, rounding strategy

Output: Integer solution z∗

Obtain oracle prediction x̂← f(π)
for ε ∈ {0, 1, . . . , n} do

(d-LP) ← Relax(p, x̂, ε) // see algorithm 3

Solve (d-LP) to obtain fractional solution y
if strategy is deterministic then

Obtain z using the deterministic greedy strategy
else

Obtain z using randomized rounding

Yield z and p(z)

return best performing z∗

is approximately O(n2.38), [CLS21]). The rounding procedure, operating in linear time,
contributes negligibly.

Notably, the proposed framework exhibits three key properties of learning-augmented
algorithms [MV22]: (i) Consistency : With perfect prediction (i.e., x̂ = x∗), the algorithm
recovers the optimal solution (up to rounding errors); (ii) Smoothness: The approximation
ratio degrades gracefully with prediction error ε, maintaining reliability; (iii) Robustness: By
running in parallel with the best worst-case algorithm, performance never falls below the
standard baseline.

3 Learnability of Oracles

Theorem 2.16 establishes that a small prediction error ε suffices to guarantee good perfor-
mance. This naturally motivates a fundamental inquiry:

How can such an oracle be acquired?

In this section, following [GR17], we address this question by establishing a statistical learn-
ability guarantee: under the standard assumption that the complexity of the hypothesis space
is controlled by a bounded VC-dimension (e.g., for neural networks of bounded size [Bar+19]),
an oracle is PAC-learnable.

3.1 Setup

Let Π denote the instance space, where each instance π ∈ Π represents a discrete optimization
problem as defined in (d-IP). Without loss of generality, we assume all instances have the
same fixed size. Let D be an unknown but fixed distribution over Π. Let F denote the
hypothesis space of functions f : Π → {0, 1}n, serving as the set of candidate oracles. Each
f ∈ F induces an algorithm Af that utilizes f(π) to generate a candidate solution x̂(π),

12

which is then fed into algorithm 1 to produce the final solution zf (π). Let x
∗(π) denote the

optimal solution to instance π. Let A = {Af | f ∈ F} denote the induced class of algorithms.
We evaluate the performance of an algorithm via a cost function COST : A× Π→ [0, H],

defined by:
COST(Af , π) ≜ H − p(zf (π)),

where p(·) is the objective function and H is a uniform upper bound on the optimal objective
value (e.g., the total number of clauses in MAX-SAT). Define the expected objective value
attained by an oracle as P(f) ≜ Eπ∼D[p(zf (π))], and define the optimal expected objective
as P∗ ≜ Eπ∼D[p(x

∗(π))].
We adopt the standard PAC framework. The expected risk of an algorithm Af is given

by R(f) ≜ Eπ∼D[COST(Af , π)]. Accordingly, let f∗
cost ∈ argminf∈F R(f) denote the optimal

oracle within the hypothesis class. We define the excess risk (error) of any candidate f as

error(f) ≜ R(f)−R(f∗
cost).

Given a training set S = {π1, . . . , πm} drawn i.i.d. from D, our goal is to identify a hy-
pothesis f̂ ∈ F such that error(f̂) is small. We employ the empirical risk minimization (ERM)
principle, which selects the hypothesis minimizing the empirical risk on S:

f̂ERM ∈ argmin
f∈F

1

m

m∑
i=1

COST(Af , πi).

3.2 ERM Guarantees

We show that ERM learns, with high probability, a near-optimal oracle within F , and then
connect this statistical guarantee to theorem 2.16 to obtain an end-to-end bound on the
expected optimization performance.

Recall from theorem 2.16 that the approximation gap of Af on an instance π is controlled
by the prediction error of the oracle f . Accordingly, we consider the expected prediction
error

E(f) ≜ Eπ∼D
[
∥f(π)− x∗(π)∥1

]
.

Let f∗
pred ∈ argminf∈F E(f) be a minimizer, and define εF ≜ E(f∗

pred), which quantifies the
statistical realizability of the hypothesis space F .

Although a low cost does not, in general, imply a small prediction error—and hence does
not immediately translate into a bound on the approximation gap in theorem 2.16—the cost-
optimal oracle still admits a guarantee comparable to that of the prediction-error minimizer,
as formalized below.

Proposition 3.1. The expected objective value attained by the cost-optimal oracle f∗
cost sat-

isfies:

P(f∗
cost) ≥ P∗ − Õ

(
nd−1/2√εF

)
.

13

In particular, if F is sufficiently rich to contain a good predictor (i.e., εF is small), then
the cost-minimizing oracle is guaranteed to yield a small expected approximation gap.

Next, we establish that an oracle learned by ERM is near-optimal once the sample size is
sufficiently large. To state a uniform convergence bound, we characterize the complexity of the
induced algorithm class A. Since the cost is real-valued, we use the pseudo-dimension [Pol90],
a standard extension of VC-dimension. The following lemma shows that the complexity of
A is controlled by the VC-dimensions of the coordinate classes comprising F .

Theorem 3.2. Let F be a hypothesis class of predictors f : Π → {0, 1}n where each coor-
dinate function class Fi has VC-dimension VCdim(Fi). Let dF :=

∑n
i=1VCdim(Fi). Let

A = {Af : f ∈ F} be the class of algorithms, where each Af predicts x̂ = f(π) and subse-
quently executes algorithm 1. Then, the pseudo-dimension of the cost functions induced by A
satisfies

Pdim(A) ≤ C dF log(e dF)

for some absolute constant C.

Leveraging standard uniform convergence results [AB99] of the pseudo-dimension and
further combine proposition 3.1, we obtain the following comprehensive learning guarantee.

Theorem 3.3. Let F be a hypothesis space as described in theorem 3.2. For any ϵ > 0 and
δ ∈ (0, 1], if the sample size m satisfies

m ≥ C

(
H

ϵ

)2(
dF log(edF) + log

(
1

δ

))
for some absolute constant C, then with probability at least 1−δ, any empirical risk minimizer
f̂ achieves an excess risk error(f̂) ≤ 2ϵ, and its expected objective value satisfies

P(f̂) ≥ P∗ − Õ
(
nd−1/2√εF

)
− 2ϵ.

We have thus established the feasibility of acquiring an oracle for our learning-augmented
optimization framework, demonstrating that the sample complexity admits a standard PAC
bound of order polylog(1/ϵ, log(1/δ), dF).

It is worth noting that this result guarantees that ERM identifies an oracle f̂ whose
performance is near-optimal in expectation (i.e., in the average case under D), rather than
ensuring pointwise performance guarantees on every individual instance. Furthermore, while
our analysis focuses on statistical learnability, the computational efficiency of ERM remains
an open problem for future investigation [GR17; BIW22].

4 Applications

In this section, we demonstrate the efficacy of our framework by applying it to two canonical
NP-hard problems: MAX-CUT and MAX-k -SAT. These problems serve as representative
benchmarks for quadratic and higher-order smooth polynomial optimization, respectively.

14

MAX-CUT As formalized in example 1, MAX-CUT involves maximizing a quadratic ob-
jective function. Since this objective is 2-smooth, our framework is directly applicable. Con-
sider near-dense instances characterized by an average vertex degree of Ω(n0.5+ξ) for some
ξ ∈ (0, 0.5]; this is equivalent to assuming OPT ≥ κ · n1.5+ξ for a constant κ > 0. Under
these conditions, our main result guarantees an approximation ratio of

1− 4

κ

√
ε/nξ.

Consequently, for near-dense graphs, a sufficiently accurate oracle yields solutions that are
provably near-optimal.

MAX-k-SAT We next address problems with higher-order constraints through MAX-k -
SAT, which optimizes a degree-k multilinear polynomial (see example 2). The corresponding
objective is β-smooth with β ≤ 4k. Specifically, for instances possessing Ω(nk−0.5+ξ) con-
straints (clauses)—or equivalently, where OPT ≥ κ · nk−0.5+ξ for some constant κ > 0—the
approximation ratio is given by

1− 2(2e(k − 2) + 1)β

κ

√
ε/nξ.

In the special case of k = 3, this simplifies to 1− 128(2e+1)
κ

√
ε/nξ. These results illustrate the

framework’s capability to effectively accommodate complex, high-degree dependencies.

Oracle Instantiation and Learnability For both MAX-CUT and MAX-k -SAT, the
predictive oracle f can be parameterized using Graph Neural Networks (GNNs) [Sel+19;
Gas+19] or Transformers [Pan+25]. Both architectures are known to possess bounded VC-
dimensions [Bar+19]. Therefore, theorem 3.3 guarantees that an oracle with near-optimal
expected performance can be learned from a polynomial number of samples, thereby estab-
lishing the statistical feasibility.

Finally, we note that our framework can be extended to other problems, particularly
MAX-k -CSP, a generalization of MAX-k -SAT that aims to satisfy the maximum number of
Boolean constraints. We refer the details of this extension to section F in the appendix.

5 Concluding Remarks

This work uses smooth integer programs as a testbed for learning-augmented discrete opti-
mization. We extend the setting of Bampis, Escoffier, and Xefteris [BEX24] by transitioning
from a parsimonious oracle to a full information oracle. By doing so, we aim to under-
stand when and how machine learning models can be combined with classical approximation
algorithms in a principled manner.

The results suggest that suitably structured predictions can be injected into the optimiza-
tion pipeline in a controlled way, leading to algorithms whose behavior varies continuously
with oracle quality and whose approximation gaps can be rigorously characterized. At the

15

same time, the oracle itself need not be treated as a black box: under mild complexity assump-
tions, it is PAC-learnable via empirical risk minimization, so that statistical and algorithmic
considerations can be aligned rather than treated in isolation.

Naturally, the present work remains only a first step. Our results currently rely on smooth
polynomial objectives within near-dense regimes, focusing primarily on average-case learn-
ability rather than the computational efficiency of the training procedures. Relaxing these
assumptions, analyzing the impact of the hypothesis space, delving deeper into the dynamics
of the optimization algorithms, and exploring richer forms of interaction between the oracle
and the optimization algorithm are all interesting directions for future investigation.

References

[Aam+25] Anders Aamand, Justin Y. Chen, Siddharth Gollapudi, Sandeep Silwal, and Hao
Wu. “Improved approximations for hard graph problems using predictions”. In:
Proceedings of the 42nd International Conference on Machine Learning. Vol. 267.
2025, pp. 73–101 (cit. on p. 21).

[AB99] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foun-
dations. Cambridge University Press, 1999 (cit. on pp. 14, 30, 32).

[AGR25] Idan Attias, Xing Gao, and Lev Reyzin. Learning-augmented algorithms for
Boolean satisfiability. 2025. arXiv: 2505.06146 (cit. on p. 21).

[AKK99] Sanjeev Arora, David Karger, and Marek Karpinski. “Polynomial time approxi-
mation schemes for dense instances of NP-hard problems”. In: Journal of Com-
puter and System Sciences 58.1 (1999), pp. 193–210 (cit. on pp. 2–6, 22, 23,
36).

[Ant+23] Antonios Antoniadis, Joan Boyar, Marek Elias, Lene Monrad Favrholdt, Ruben
Hoeksma, Kim S. Larsen, Adam Polak, and Bertrand Simon. “Paging with suc-
cinct predictions”. In: Proceedings of the 40th International Conference on Ma-
chine Learning. Vol. 202. 2023, pp. 952–968 (cit. on p. 21).

[Aro+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof verification and the hardness of approximation problems”. In: Journal of
the ACM 45.3 (May 1998), pp. 501–555 (cit. on p. 20).

[Bal+17] Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White.
“Learning-theoretic foundations of algorithm configuration for combinatorial par-
titioning problems”. In: Proceedings of the 30th Conference on Learning Theory.
Vol. 65. 2017, pp. 213–274 (cit. on p. 22).

[Bal+18] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. “Learn-
ing to branch”. In: Proceedings of the 35th International Conference on Machine
Learning. Vol. 80. 2018, pp. 344–353 (cit. on pp. 21, 22).

[Bal+21] Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik.
“Sample complexity of tree search configuration: Cutting planes and beyond”.
In: Advances in Neural Information Processing Systems, 34. 2021 (cit. on p. 22).

16

https://arxiv.org/abs/2505.06146

[Bal+24] Maria-Florina Balcan, Dan Deblasio, Travis Dick, Carl Kingsford, Tuomas Sand-
holm, and Ellen Vitercik. “How much data is sufficient to learn high-performing
algorithms?” In: Journal of the ACM 71.5 (Oct. 2024) (cit. on p. 22).

[Bam+23] Evripidis Bampis, Bruno Escoffier, Themis Gouleakis, Niklas Hahn, Kostas Lakis,
Golnoosh Shahkarami, and Michalis Xefteris. “Learning-augmented online TSP
on rings, trees, flowers and (almost) everywhere else”. In: 31st Annual European
Symposium on Algorithms (ESA 2023). Vol. 274. 2023, 12:1–12:17 (cit. on p. 2).

[Bar+19] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. “Nearly-
tight VC-dimension and pseudodimension bounds for piecewise linear neural net-
works”. In: Journal of Machine Learning Research 20.63 (2019), pp. 1–17 (cit. on
pp. 12, 15).

[BC23] Xingjian Bai and Christian Coester. “Sorting with predictions”. In: Advances in
Neural Information Processing Systems, 36. 2023 (cit. on p. 21).

[BEX22] Evripidis Bampis, Bruno Escoffier, and Michalis Xefteris. “Canadian traveller
problem with predictions”. In: Approximation and Online Algorithms: 20th In-
ternational Workshop, WAOA 2022, Potsdam, Germany, September 8–9, 2022,
Proceedings. 2022, pp. 116–133 (cit. on p. 2).

[BEX24] Evripidis Bampis, Bruno Escoffier, and Michalis Xefteris. “Parsimonious learning-
augmented approximations for dense instances of NP-hard problems”. In: Pro-
ceedings of the 41st International Conference on Machine Learning. Vol. 235.
2024, pp. 2700–2714 (cit. on pp. 2–4, 15, 22).

[BIW22] Peter Bartlett, Piotr Indyk, and Tal Wagner. “Generalization bounds for data-
driven numerical linear algebra”. In: Proceedings of the 35th Conference on
Learning Theory. Vol. 178. 2022, pp. 2013–2040 (cit. on pp. 14, 22).

[CLS21] Michael B Cohen, Yin Tat Lee, and Zhao Song. “Solving linear programs in the
current matrix multiplication time”. In: Journal of the ACM 68.1 (2021), pp. 1–
39 (cit. on p. 12).

[Coh+24] Vincent Cohen-Addad, Tommaso d’Orsi, Anupam Gupta, Euiwoong Lee, and
Debmalya Panigrahi. “Learning-augmented approximation algorithms for maxi-
mum cut and related problems”. In: Advances in Neural Information Processing
Systems, 37. Vol. 37. 2024, pp. 25961–25980 (cit. on p. 21).

[Din+21] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei
Vassilvitskii. “Faster matchings via learned duals”. In: Advances in Neural In-
formation Processing Systems, 34. 2021. isbn: 9781713845393 (cit. on p. 21).

[Erg+22] Jon C. Ergun, Zhili Feng, Sandeep Silwal, David Woodruff, and Samson Zhou.
“Learning-augmented k-means clustering”. In: Proceedings of the 10th Interna-
tional Conference on Learning Representations. 2022, pp. 1–30 (cit. on p. 21).

[FL81] W Fernandez de La Vega and George S. Lueker. “Bin packing can be solved
within 1+ ε in linear time”. In: Combinatorica 1.4 (1981), pp. 349–355 (cit. on
p. 20).

17

[FLP16] Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. “Sub-exponential
approximation schemes for CSPs: From dense to almost sparse”. In: 33rd Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2016). Vol. 47. 2016,
37:1–37:14 (cit. on p. 22).

[Gas+19] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea
Lodi. “Exact combinatorial optimization with graph convolutional neural net-
works”. In: Advances in Neural Information Processing Systems, 32. 2019 (cit.
on p. 15).

[GMM25] Suprovat Ghoshal, Konstantin Markarychev, and Yury Markarychev. “Constraint
satisfaction problems with advice”. In: Proceedings of the 2025 Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM. 2025, pp. 1202–1221 (cit. on
p. 21).

[GR17] Rishi Gupta and Tim Roughgarden. “A PAC approach to application-specific
algorithm selection”. In: SIAM Journal on Computing 46.3 (2017), pp. 992–1017
(cit. on pp. 4, 12, 14, 22).

[GW95] Michel X. Goemans and David P. Williamson. “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming”. In: Journal of the ACM 42.6 (1995), pp. 1115–1145 (cit. on pp. 8, 21).

[H̊as01] Johan H̊astad. “Some optimal inapproximability results”. In: Journal of the ACM
48.4 (July 2001), pp. 798–859 (cit. on p. 2).

[Im+22] Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Purohit. “Parsimonious
learning-augmented caching”. In: Proceedings of the 39th International Confer-
ence on Machine Learning. Vol. 162. 2022, pp. 9588–9601 (cit. on p. 21).

[Kho+22] Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar, and Sergei Vassil-
vitskii. “Learning predictions for algorithms with predictions”. In: Advances in
Neural Information Processing Systems, 35. 2022 (cit. on p. 22).

[KPS18] Ravi Kumar, Manish Purohit, and Zoya Svitkina. “Improving online algorithms
via ML predictions”. In: Advances in Neural Information Processing Systems,
31. 2018, pp. 9684–9693 (cit. on pp. 2, 21).

[Kra+18] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. “The
case for learned index structures”. In: Proceedings of the 2018 International Con-
ference on Management of Data. Houston, TX, USA, 2018, pp. 489–504 (cit. on
p. 21).

[LSV23] Silvio Lattanzi, Ola Svensson, and Sergei Vassilvitskii. “Speeding up Bellman
Ford via minimum violation permutations”. In: Proceedings of the 40th Interna-
tional Conference on Machine Learning. Vol. 202. 2023, pp. 18584–18598 (cit. on
p. 21).

[LV18] Thodoris Lykouris and Sergei Vassilvtiskii. “Competitive caching with machine
learned advice”. In: Proceedings of the 35th International Conference on Machine
Learning. Vol. 80. 2018, pp. 3296–3305 (cit. on p. 21).

18

[LV21] Thodoris Lykouris and Sergei Vassilvitskii. “Competitive caching with machine
learned advice”. In: Journal of the ACM 68.4 (July 2021) (cit. on pp. 2, 21).

[Mit20] Michael Mitzenmacher. “Scheduling with predictions and the price of mispredic-
tion”. In: Proceedings of the 11th Innovations in Theoretical Computer Science
Conference. Ed. by Thomas Vidick. Vol. 151. 2020, 14:1–14:18 (cit. on p. 21).

[MV22] Michael Mitzenmacher and Sergei Vassilvitskii. “Algorithms with predictions”.
In: Communications of the ACM 65.7 (2022), pp. 33–35 (cit. on pp. 2, 12, 21).

[Pan+25] Leyan Pan, Vijay Ganesh, Jacob Abernethy, Chris Esposo, and Wenke Lee. “Can
Transformers Reason Logically? A Study in SAT Solving”. In: Proceedings of the
42nd International Conference on Machine Learning. Vol. 267. 2025, pp. 47632–
47671 (cit. on p. 15).

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994
(cit. on p. 38).

[Pol90] David Pollard. “Empirical processes: Theory and applications”. In: NSF-CBMS
Regional Conference Series in Probability and Statistics. Vol. 2. Institute of
Mathematical Statistics. 1990, pp. 1–86 (cit. on pp. 14, 31).

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. “Optimization, approxima-
tion, and complexity classes”. In: Journal of Computer and System Sciences 43.3
(1991), pp. 425–440 (cit. on pp. 2, 20, 38).

[Rag88] Prabhakar Raghavan. “Probabilistic construction of deterministic algorithms:
Approximating packing integer programs”. In: Journal of Computer and System
Sciences 37.2 (Oct. 1988), pp. 130–143 (cit. on p. 8).

[RT12] Prasad Raghavendra and Ning Tan. “Approximating CSPs with global cardi-
nality constraints using SDP hierarchies”. In: Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2012, pp. 373–387 (cit.
on p. 21).

[RT87] Prabhakar Raghavan and Clark D. Tompson. “Randomized rounding: A tech-
nique for provably good algorithms and algorithmic proofs”. In: Combinatorica
7.4 (Dec. 1987), pp. 365–374 (cit. on p. 8).

[Sah75] Sartaj Sahni. “Approximate algorithms for the 0/1 knapsack problem”. In: Jour-
nal of the ACM 22.1 (Jan. 1975), pp. 115–124 (cit. on p. 20).

[Sau72] Norbert Sauer. “On the density of families of sets”. In: Journal of Combinatorial
Theory, Series A 13.1 (1972), pp. 145–147 (cit. on p. 32).

[Sel+19] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L. Dill. “Learning a SAT solver from single-bit supervision”. In: Pro-
ceedings of 7th International Conference on Learning Representations. 2019 (cit.
on p. 15).

[SM24] Rana Shahout and Michael Mitzenmacher. “SkipPredict: When to invest in pre-
dictions for scheduling”. In: Advances in Neural Information Processing Systems,
37. 2024 (cit. on p. 21).

19

Appendix

The organization of this appendix is as follows:

• Section A presents a comprehensive review of related literature.

• Section B elaborates on the specific subroutines utilized in algorithm 1.

• Sections C and D provide technical details and proofs omitted from the main text.

• Section E generalizes (d-IP) to accommodate general polynomial constraints.

• Section F demonstrates the applicability to the MAX-k -CSP problem, focusing on the
smoothness condition.

A Related Work

This section provides a comprehensive review of the literature pertinent to this work. We
begin by revisiting classical results in approximation algorithms, followed by a detailed survey
of recent advancements in learning-augmented algorithms and data-driven algorithm selec-
tion. Finally, we discuss the specific problem of smooth integer programming, which forms
the theoretical foundation of this work.

A.1 Approximation Algorithms

Approximation algorithms represent a canonical paradigm for addressing computationally
intractable optimization problems, typically offering polynomial-time solvability with prov-
able guarantees on solution quality. The efficacy of such an algorithm is quantified by its
approximation ratio, defined as the worst-case ratio between the objective value it obtains
and that of an optimal solution.

A prominent class of such algorithms is the Polynomial-Time Approximation Scheme
(PTAS). Given a problem instance π and a precision parameter ϵ ∈ (0, 1], a PTAS delivers
a solution with an objective value within a factor of 1− ϵ of the optimum for maximization
problems (or 1+ϵ for minimization). Its running time is polynomial in the problem size for any
fixed ϵ > 0, although it may be exponential in 1/ϵ (e.g., O(n1/ϵ)). A PTAS thus facilitates a
trade-off between approximation accuracy and computational complexity. However, seminal
results in computational complexity [PY91; Aro+98] indicate that unless P = NP, many
fundamental NP-hard problems—such as Vertex Cover, MAX-k -SAT, and MAX-CUT—do
not admit a PTAS. Consequently, PTASs are generally attainable only for specific subclasses
of NP-hard problems, such as the Knapsack [Sah75] and Bin Packing [FL81] problems.

20

A.2 Learning-augmented algorithms

The field of learning-augmented algorithms (LAAs)1, alternatively referred to as “algorithms
with predictions” or “data-driven algorithms,” has emerged as a vibrant research area at the
intersection of algorithm design, optimization, and machine learning.

Pioneered by Lykouris and Vassilvitskii [LV21] in their seminal work on caching [LV18],
this framework challenges traditional worst-case analysis by leveraging machine-learned pre-
dictions to enhance algorithmic performance in practical scenarios. The primary objective
is to design algorithms that effectively integrate such predictions while satisfying three key
properties [MV22]:

• consistency, ensuring near-optimal performance when predictions are accurate;

• smoothness, guaranteeing that performance degrades gracefully with prediction error;
and

• robustness, maintaining guarantees comparable to traditional baselines, even when pre-
dictions are arbitrarily poor.

This research direction has attracted significant attention, yielding diverse results in areas
including scheduling [KPS18; Mit20; SM24], matching [Din+21], sorting [BC23], cluster-
ing [Erg+22], indexing [Kra+18], branch-and-bound [Bal+18], shortest paths [LSV23], pag-
ing [Ant+23], and caching [Im+22].

In the context of MAX-CUT, Cohen-Addad et al. [Coh+24] investigated two prediction
models: label advice, where each vertex is assigned its true label with probability 1/2+ η, and
subset advice, where the true labels are revealed for an η-fraction of vertices. Under the label
advice model, they improved upon the classic approximation ratio αGW ≈ 0.878 of Goemans
and Williamson [GW95] to αGW + Ω̃(η4); under the subset advice model, they enhanced the
ratio αRT ≈ 0.858 of Raghavendra and Tan [RT12] to αRT + Ω̃(η). Notably, these models
rely on the assumption that prediction are independent across vertices.

Subsequently, Aamand et al. [Aam+25] extended the framework of Cohen-Addad et al.
[Coh+24] to an edge-based variant, developing algorithms applicable to more general graph
problems such as Vertex Cover, Set Cover, and Maximum Independent Set. More recently,
Ghoshal, Markarychev, and Markarychev [GMM25] achieved an approximation ratio of 1 −
O(1/η

√
∆) under the label advice model via semidefinite programming (SDP) techniques,

provided the average degree ∆ satisfies ∆ ≥ C/η2.
Regarding MAX-SAT, Attias, Gao, and Reyzin [AGR25] adopted the subset advice model,

proposing a black-box framework that fixes the revealed η-fraction of variables and applies
an existing α-approximation algorithm to the residual subproblem. This strategy yields an
overall approximation ratio of α+ (1− α)η.

In contrast to previous works [Coh+24; Aam+25; GMM25; AGR25], which assume inde-
pendent prediction errors, our oracle formulation operates without such restrictive assump-
tions.

1A comprehensive repository of LAAs is maintained at https://algorithms-with-predictions.github.
io/.

21

https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/

A.3 Data-driven algorithm selection

While the LAA framework offers significant theoretical advancements, it typically assumes
access to an external oracle, the practical acquisition of which remains a challenge. A com-
plementary perspective is offered by data-driven algorithm selection, which seeks to learn
effective algorithmic configurations directly from problem instance distributions.

Gupta and Roughgarden [GR17] established the theoretical foundations of this field by
introducing a PAC-learning framework for algorithm selection. They modeled the problem
as identifying the optimal parameter configuration for a family of algorithms (e.g., configu-
rations of a SAT solver) with respect to an unknown distribution of inputs. Their analysis
demonstrated that if the algorithm class has bounded complexity—measured by pseudo-
dimension—the performance of the learned configuration generalizes to unseen instances
with high probability. This framework has since been extended to various domains, includ-
ing branch-and-bound [Bal+18] and general parameter tuning [Bal+17; Bal+21; Kho+22;
BIW22; Bal+24].

In this work, we bridge these two perspectives. We treat the oracle f as a learnable
function within a family F and leverage the PAC framework of Gupta and Roughgarden
[GR17] to provide learnability guarantees.

A.4 Smooth integer programs

Many approximation algorithms for NP-hard problems rely on formulating the problem as
a linear integer program (LIP). As solving LIPs is NP-complete, all problems in NP admit
such a formulation. While many problems possess natural LIP formulations that reveal their
structural properties and facilitate approximation, this approach can obscure the intrinsic
characteristics of others. Specifically, an approximately optimal solution to the LIP formula-
tion may diverge significantly from the optimal solution of the original problem. In such cases,
a more natural formulation often involves a nonlinear integer program where the objective
function is a low-degree polynomial.

In this context, the seminal work of Arora, Karger, and Karpinski [AKK99] introduced
a polynomial-time approximation scheme (PTAS) for smooth integer programming prob-
lems in the dense regime. Their approach is centered on exhaustive sampling : given a
precision parameter ϵ, the algorithm selects a random subset of O(logn/ϵ2) variables. It
then exhaustively enumerates all possible assignments for this subset—incurring a time com-
plexity of 2O(logn/ϵ2) = nO(1/ϵ2)—and determines the values of the remaining variables via
linear programming, followed by randomized rounding for each assignment. Arora, Karger,
and Karpinski [AKK99] demonstrated that this approach achieves an approximation gap of
O(ndϵ). This strategy provably yields a (1 − ϵ)-approximation for smooth integer programs
where the objective function and constraints are dense polynomials of constant degree. This
framework was subsequently generalized to handle almost-sparse instances of smooth integer
programs, albeit at the cost of sub-exponential time complexity [FLP16].

Recently, Bampis, Escoffier, and Xefteris [BEX24] refined the methodology of Arora,
Karger, and Karpinski [AKK99] by incorporating a parsimonious oracle. Instead of perform-
ing exhaustive enumeration, their algorithm samples a multiset S of O(log n/ϵ3) variables and

22

queries an oracle for their optimal assignments. It then proceeds in a manner analogous to
Arora, Karger, and Karpinski [AKK99], using linear programming and randomized rounding
to determine the values of the remaining variables. This method achieves an approximation
gap of O(nd(ϵ + ε)), where ε = ∥x̂ − x∗∥1 denotes the prediction error. Within the dense
regime, they achieve an approximation ratio of 1− ϵ−O(ε/|S|).

In contrast, our approach leverages a full-information oracle, which avoids the sampling
phase and significantly reduces the additive error from O(nd(ϵ + ε)) to Õ(nd−1/2√ε). This
enhancement broadens the applicability of the framework from the dense regime to the near-
dense regime.

B Detailed Algorithmic Subroutines

In this section, we provide the detailed subroutines for the hierarchical decomposition and
the oracle-guided relaxation which are used in algorithm 1. These algorithms constitute the
core computational engines of our framework, ensuring efficient polynomial decomposition
and robust linear relaxation.

B.1 Hierarchical Decomposition

The Decompose subroutine (algorithm 2) recursively decomposes the polynomial p(x) into
its hierarchical components, as established in lemma 2.4.

Subroutine 2: Decompose
Input : n-variate degree-d β-smooth polynomial p(x)
Output: Decomposition components {pi(x)}ni=1 and constant remainder c
if p(x) is constant then

return p(x)

for i← 1 to n do
if some monomial in p(x) contains xi then

pi(x)← coefficient of xi in p(x)
p(x)← p(x)− xi pi(x)
Decompose

(
pi(x)

)
c← p(x)

B.1.1 Running Example

To elucidate the Decompose subroutine, consider the polynomial p(x) = x1x2x3 + x2x4 +3
over variables {x1, . . . , x4}. The algorithm iterates through indices i = 1 to 4:

1. Iteration i = 1: Extract terms containing x1. The coefficient is p1(x) = x2x3. The
remainder becomes p(x)← x2x4+3. Recursively decomposing p1(x) yields p1,2(x) = x3
and p1,2,3(x) = 1.

23

2. Iteration i = 2: Extract terms containing x2 from the updated remainder. The
coefficient is p2(x) = x4. The remainder becomes p(x) ← 3. Recursive decomposition
gives p2,4(x) = 1.

3. Iterations i = 3, 4: No terms contain x3 or x4. The remainder persists as c = 3.

The resulting non-zero decomposition components are:

p1(x) = x2x3, p1,2(x) = x3, p1,2,3(x) = 1, p2(x) = x4, p2,4(x) = 1, c = 3.

This corresponds to the expansion p(x) = x1(x2(x3 · 1)) + x2(x4 · 1) + 3.

B.2 Relaxation

Given an oracle prediction x̂ and an error budget ε, the Relax procedure (algorithm 3)
constructs the linear program (d-LP). It computes the necessary tolerance parameters δI for
each component constraint to ensure the validity of the relaxation.

Subroutine 3: Relax
Input : n-variate degree-d β-smooth objective p(x), oracle prediction x̂ ∈ {0, 1}n,

error budget ε
Output: Linear programming relaxation (d-LP)

Compute decomposition components {pI(x)}I∈I via Decompose(p(x))
foreach I ∈ I do

if |I| < d− 1 then

δI ← 2βend−|I|−1/2√ε
else

δI ← β
√
nε

Construct constraint: qI(x) ∈ [pI(x̂)− δI , pI(x̂) + δI]

Relax integrality constraints: x ∈ {0, 1}n → x ∈ [0, 1]n

Construct the linear program (d-LP)
return (d-LP)

C Omitted Material for the Approximation Framework

This section presents the proofs of the intermediate lemmas and the main approximation
theorems stated in section 2. We first establish the properties of smooth polynomials and
then derive the bounds for the quadratic and general cases.

24

C.1 Properties of Smooth Polynomials

Proposition C.1 (Bound on constants). Let p(x) be an n-variate degree-d polynomial that is
β-smooth. For any fixed index tuple I = (i1, . . . , id−l), the (d− l)-level decomposition satisfies

pI(x) = cI +
∑
j∈[n]

xI,j · pI,j(x),

where the constant term satisfies |cI | ≤ βnl.

This result follows directly from definition 2.1.

Corollary 2.5. Let p(x) be an n-variate β-smooth polynomial of degree d. For any fixed
index tuple I = (i1, . . . , id−l) and any x ∈ {0, 1}n, the component pI(x) satisfies

|pI(x)| ≤ β(l + 1)nl.

Proof. The proof proceeds by induction on l. For l = 0, pI(x) reduces to the constant cI .
By proposition C.1, we have |cI | ≤ β, which is consistent with β(0 + 1)n0 = β.

Assume the bound holds for level l− 1; that is, for any index tuple I ′ of length d− (l− 1)
and any x ∈ {0, 1}n, |pI′(x)| ≤ β l nl−1. Fix I = (i1, . . . , id−l). Applying the decomposition:

|pI(x)| ≤ |cI |+
∑
j∈[n]

xI,j |pI,j(x)|.

Using proposition C.1, we have |cI | ≤ βnl. By the inductive hypothesis, |pI,j(x)| ≤ β l nl−1

for each j. Since xI,j ∈ {0, 1}, the summation contains at most n non-zero terms. Therefore,

|pI(x)| ≤ βnl + n · (β l nl−1) = βnl(1 + l) = β(l + 1)nl.

This completes the proof.

C.2 Analysis of the Quadratic Case

Lemma 2.7. Let p(x) be an n-variate β-smooth polynomial of degree 2 with the decomposition
p(x) =

∑
i∈[n] xipi(x) + c. For any two binary vectors x∗, x̂ ∈ {0, 1}n, let ε = ∥x∗ − x̂∥1.

Then, for any i ∈ [n], the deviation of the linear component is bounded by:

|pi(x̂)− pi(x
∗)| ≤ β

√
n
√
ε.

Proof. Recall that for a quadratic polynomial, the component pi(x) is linear, i.e., pi(x) =
ci +

∑
j∈[n] cijxj . The difference is thus

pi(x̂)− pi(x
∗) =

∑
j∈[n]

cij(x̂j − x∗j).

25

By the β-smoothness property, the quadratic coefficients satisfy |cij | ≤ β. Applying the
Cauchy-Schwarz inequality yields∣∣∣∣∣∣

∑
j∈[n]

cij(x̂j − x∗j)

∣∣∣∣∣∣ ≤
√∑

j∈[n]

c2ij ·
√∑

j∈[n]

(x̂j − x∗j)
2.

The first term is bounded by
√
nβ2 = β

√
n. For the second term, since the variables are

binary, (x̂j − x∗j)
2 = |x̂j − x∗j |, and thus the sum equals ∥x̂ − x∗∥1 = ε. Therefore, the

deviation is at most β
√
n
√
ε.

In the linear setting, we establish the following lemma regarding the rounding error:

Lemma C.2. Let y ∈ [0, 1]n, and let z ∈ {0, 1}n be a vector obtained via independent
randomized rounding, where Pr[zi = 1] = yi for all i ∈ [n]. Suppose the coefficients (ci)

n
i=1

satisfy |ci| ≤ β. Then, for any k ≥ 1, with probability at least 1− 2/nk+1,∣∣∣ n∑
i=1

ci(yi − zi)
∣∣∣ ≤ β

√
k+1
2

√
n lnn.

Proof. Let X =
∑n

i=1 ci(yi−zi). Due to the independence of the rounding process, E[zi] = yi,
which implies E[X] = 0. Consider X as a function f(z1, . . . , zn) =

∑n
i=1 ci(yi − zi) of the

independent variables z1, . . . , zn. Altering a single component zi changes the value of f by
at most |ci| ≤ β. Consequently, the bounded difference condition holds with ∆i ≤ β for all i.
By McDiarmid’s inequality, for any t > 0, we have:

Pr
(
|X| ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1∆
2
i

)
≤ 2 exp

(
− 2t2

nβ2

)
.

Choosing t = β
√

k+1
2

√
n lnn yields the claim with probability at least 1− 2/nk+1.

C.3 Proof of theorem 2.9

Theorem 2.9. Let p(x) be an n-variate quadratic β-smooth polynomial. Let y ∈ [0, 1]n be a
fractional vector, and let z ∈ {0, 1}n be the integral vector derived via independent randomized
rounding with Pr[zi = 1] = yi. For any k ≥ 1, with probability at least 1−4/nk, the following
bound holds:

|p(z)− p(y)| ≤ 3nβ

√
k + 1

2

√
n lnn. (3)

Proof. Observe that the deviation can be decomposed as follows:∣∣∣∣∣∣
∑
i∈[n]

[
zipi(z)− yipi(y)

]∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i∈[n]

zi
(
pi(z)− pi(y)

)∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
i∈[n]

(yi − zi)pi(y)

∣∣∣∣∣∣ .

26

The first term can be bounded by noting that zi ∈ {0, 1}. Applying a union bound over
i ∈ [n], lemma C.2 holds simultaneously for all coordinates with probability at least 1−2/nk.
Specifically, ∣∣∣∣∣∣

∑
i∈[n]

zi
(
pi(z)− pi(y)

)∣∣∣∣∣∣ ≤ n · β
√

k + 1

2

√
n lnn, (7)

which holds with probability at least 1− 2/nk.
For the second term, applying an analogous McDiarmid argument to Y =

∑
i∈[n](yi −

zi)pi(y), and using the bound |pi(y)| ≤ 2βn, yields∣∣∣∣∣∣
∑
i∈[n]

(yi − zi)pi(y)

∣∣∣∣∣∣ ≤ n · 2β
√

k + 1

2

√
n lnn, (8)

which holds with probability at least 1− 2/nk+1.
Finally, combining (7) and (8) via a union bound yields the desired result.

C.4 Proof of theorem 2.11

Theorem 2.11. Let x∗ be the optimal solution to (2-IP), and let z be the integral solution
obtained via randomized rounding from the fractional solution to (2-LP). With probability at
least 1− 4n−k, we have

p(z) ≥ p(x∗)− 2βn3/2√ε− 3βn3/2

√
k + 1

2
lnn . (4)

Proof. Our approach proceeds by relaxing (2-IP) to (2-LP) using the oracle, solving for a
fractional solution y, and subsequently applying randomized rounding to recover an integral
solution z. Combining the rounding error from (3) and the relaxation gap from (2), we derive
the following bound with probability at least 1− 4n−k:

p(z) ≥ p(y)− 3β

√
k + 1

2
· n3/2

√
lnn

≥ p(x∗)− 2βn3/2√ε− 3β

√
k + 1

2
· n3/2

√
lnn .

(9)

In the case of dense instances (e.g., MAX-CUT with average degree Ω(n)), the optimal
value scales as p(x∗) = OPT = Θ(n2). Consequently, the additive bound translates to a
multiplicative guarantee:

p(z) ≥ OPT ·
(
1− Õ

(√
ε

n

))
. (10)

27

C.5 Proof of theorem 2.12

Theorem 2.12. Let y be the optimal solution to the relaxed problem (d-LP) and x∗ be the
optimal solution to the original integer program (d-IP). The relaxation gap is bounded by:

p(y) ≥ p(x∗)− 2 [2e(d− 2) + 1]βnd−1/2√ε.

Proof. Define the approximation error function gap(p, q)(x) := |p(x) − q(x)|. By the opti-
mality of y for the maximization problem (d-LP) and the feasibility of x∗, we have:

p(y) ≥ q(y)− gap(p, q)(y)

≥ q(x∗)− gap(p, q)(y)

≥ p(x∗)− gap(p, q)(y)− gap(p, q)(x∗).

(11)

Thus, it suffices to bound gap(p, q)(x) for any x ∈ [0, 1]n.
Consider the gap for a polynomial term pI(x) and its linear approximation qI(x):

gap(pI , qI)(x) =

∣∣∣∣∣∣
∑
j∈[n]

xI,j (pI,j(x)− pI,j(x̂))

∣∣∣∣∣∣
≤

∑
j∈[n]

|pI,j(x)− pI,j(x̂)|

≤
∑
j∈[n]

(|pI,j(x)− qI,j(x)|+ |qI,j(x)− pI,j(x̂)|)

≤
∑
j∈[n]

gap(pI,j , qI,j)(x) +
∑
j∈[n]

δI,j ,

(12)

where the first inequality uses xI,j ∈ [0, 1] and the triangle inequality, and the last follows
from the constraint qI,j(x) ∈ pI,j(x̂)± δI,j .

Applying this recurrence relation over the decomposition tree yields:

gap(p, q)(x) ≤
∑
I∈I

δI .

Substituting the bounds for δI derived in section 2.3.1:

• For linear terms (|I| = d− 1), δI ≤ β
√
n
√
ε.

• For higher-order terms (1 ≤ |I| < d− 1), δI ≤ 2βend−|I|−1/2√ε.

Summing over all I ∈ I, we obtain:∑
I∈I

δI ≤ [2e(d− 2) + 1]βnd−1/2√ε.

Combining the errors for y and x∗ completes the proof.

28

C.6 Omitted Results for General Case

Theorem 2.13. Let y ∈ [0, 1]n, and let z ∈ {0, 1}n be generated via independent randomized
rounding where Pr[zi = 1] = yi for all i ∈ [n]. Consider an n-variate degree-d polynomial
p(x) that is β-smooth. For any k > d, with probability at least 1− 2d/n k+1−(d−1),

|p(y)− p(z)| ≤
(
1 + 2e (d− 2)

)
β nd−1

√
k+1
2

√
n lnn.

Proof. We proceed by induction over the decomposition depth of p. Fix an index tuple
I = (i1, . . . , id−l) with l ∈ [d− 1]. Using the decomposition,∣∣pI(z)− pI(y)

∣∣ = ∣∣∣ ∑
i∈[n]

zI,i pI,i(z)−
∑
i∈[n]

yI,i pI,i(y)
∣∣∣

≤
∣∣∣ ∑
i∈[n]

zI,i
(
pI,i(z)− pI,i(y)

)∣∣∣+ ∣∣∣ ∑
i∈[n]

(zI,i − yI,i) pI,i(y)
∣∣∣.

For the second term, invoking lemma C.2 together with the bound |pI,i(y)| ≤ 2βend−|I|−1

from lemma 2.6, we obtain, with probability at least 1− 2/nk+1,∣∣∣ ∑
i∈[n]

(zI,i − yI,i) pI,i(y)
∣∣∣ ≤ 2βend−|I|−1

√
k+1
2

√
n lnn.

For the first term, suppose a uniform per-coordinate bound |pI,i(z)−pI,i(y)| ≤ ∆ holds with
failure probability at most δ. A union bound then gives∣∣∣ ∑

i∈[n]

zI,i
(
pI,i(z)− pI,i(y)

)∣∣∣ ≤ n∆,

with probability at least 1− nδ. At the base level, |I| = d− 1, lemma C.2 implies

|pI(z)− pI(y)| ≤ β
√

k+1
2

√
n lnn

with probability at least 1− 2/nk+1. Propagating this bound through the d− 1 levels of the
decomposition and aggregating the contributions yields

|p(z)− p(y)| ≤
(
1 + 2e (d− 2)

)
β nd−1

√
k+1
2

√
n lnn,

which holds with probability at least 1− 2d/n k+1−(d−1).

C.7 Proof of theorem 2.15

Below we first demonstrate the procedure of greedy rounding in algorithm 4.

Theorem 2.15. Let p(x) be a multilinear polynomial. For any fractional solution y ∈ [0, 1]n,
the greedy deterministic rounding procedure yields an integral vector z ∈ {0, 1}n such that:

p(z) ≥ p(y).

29

Algorithm 4: Greedy Deterministic Rounding

Input : y ∈ [0, 1]n, multilinear objective p(x)
Output: Integral solution z ∈ {0, 1}n
for i← 1 to n do

gi(t) := p(y1, . . . , yi−1, t, yi+1, . . . , yn);
zi ← argmaxt∈{0,1} gi(t);

Update y by setting yi ← zi;

return z = y;

Proof. Let y(i) denote the solution after rounding the first i variables. We show that
p(y(i)) ≥ p(y(i−1)) for all i ∈ [n]. Consider the i-th step where we determine zi. Since
p(x) is multilinear, the function gi(t) defined by fixing all other variables to their values in
y(i−1) is linear (affine) in t. A linear function on the interval [0, 1] achieves its maximum at
one of the endpoints. Therefore:

max
t∈{0,1}

gi(t) ≥ gi(y
(i−1)
i),

which implies p(y(i)) ≥ p(y(i−1)). By induction, p(z) = p(y(n)) ≥ p(y(0)) = p(y).

D Omitted Material for Learnability Guarantees

In this section, we provide the complete proofs for the learnability results presented in sec-
tion 3. We begin by recalling standard definitions from learning theory and then proceed to
bound the pseudo-dimension of our algorithm class.

D.1 Standard Definitions and Results

Definition D.1 ((ϵ, δ)-learnable). A learning algorithm L is said to (ϵ, δ)-learn the optimal
algorithm in A using m samples if, for every distribution D over Π, with probability at
least 1 − δ over the draw of {π1, . . . , πm} ∼ D, L outputs an algorithm Â ∈ A such that
error(Â;D) ≤ ϵ.

Definition D.2 (Pseudo-dimension, [AB99]). Let H be a set of real-valued functions defined
on Π. A finite subset S = {π1, . . . , πm} ⊆ Π is (pseudo-)shattered by H if there exist real-
valued witnesses r1, . . . , rm such that for each subset T ⊆ S, there exists a function h ∈ H
satisfying h(πi) > ri if and only if i ∈ T . The pseudo-dimension of H, denoted by Pdim(H),
is the maximum cardinality m for which some subset S ⊆ Π of size m is pseudo-shattered by
H.

Lemma D.3 (Uniform convergence, [AB99]). Let H be a class of functions mapping Π to
[0, H], with pseudo-dimension dH. For any distribution D over Π, any precision ϵ > 0, and

30

any confidence parameter δ ∈ (0, 1], if the sample size satisfies

m ≥ C

(
H

ϵ

)2(
dH + log

(
1

δ

))
, (13)

where C is an absolute constant, then with probability at least 1−δ over the draw of {π1, . . . , πm} ∼
D, the following uniform bound holds:

sup
h∈H

∣∣∣∣∣Eπ∼D[h(π)]−
1

m

m∑
i=1

h(πi)

∣∣∣∣∣ ≤ ϵ.

The following lemma formally bridges uniform convergence and the sample complexity of
ERM, establishing that a bounded pseudo-dimension is sufficient for learnability.

Lemma D.4. Fix ϵ > 0, δ ∈ (0, 1], instance space Π, and cost function COST. Suppose the
algorithm class A induces a cost function class with pseudo-dimension dA. Then, any ERM
algorithm (2ϵ, δ)-learns the optimal algorithm in A with a sample size m satisfying:

m ≥ C

(
H

ϵ

)2(
dA + log

(
1

δ

))
, (14)

where C is an absolute constant.

Proof. Let H = {hA : Π → [0,H] | A ∈ A} where hA(π) := COST(A, π). By assumption,
Pdim(H) = dA. If m satisfies (13), lemma D.3 guarantees that with probability at least 1−δ,

sup
A∈A

∣∣∣Eπ∼D[hA(π)]− 1
m

m∑
i=1

hA(πi)
∣∣∣ ≤ ϵ.

Let AD ∈ argminA∈A Eπ∼D[hA(π)] be the optimal algorithm and let Â be the ERM solution,
which minimizes 1

m

∑m
i=1 hA(πi). We have:

Eπ∼D[hÂ(π)] ≤
1
m

m∑
i=1

hÂ(πi) + ϵ

≤ 1
m

m∑
i=1

hAD(πi) + ϵ

≤ Eπ∼D[hAD(π)] + 2ϵ,

where the first and third inequalities follow from uniform convergence, and the second from
the definition of ERM. Rearranging terms yields Eπ∼D[hÂ(π)] − Eπ∼D[hAD(π)] ≤ 2ϵ. Thus,

Â has an error of at most 2ϵ with probability at least 1− δ.

The theoretical guarantee of ERM relies on the uniform convergence of empirical means to
their true expectations. We characterize the complexity of the function class using the notion
of pseudo-dimension [Pol90], which generalizes the VC-dimension to real-valued functions.

The subsequent theorem establishes that if F possesses a bounded VC-dimension, the
induced algorithm class A also exhibits bounded complexity.

31

Theorem 3.2. Let F be a hypothesis class of predictors f : Π → {0, 1}n where each coor-
dinate function class Fi has VC-dimension VCdim(Fi). Let dF :=

∑n
i=1VCdim(Fi). Let

A = {Af : f ∈ F} be the class of algorithms, where each Af predicts x̂ = f(π) and subse-
quently executes algorithm 1. Then, the pseudo-dimension of the cost functions induced by A
satisfies

Pdim(A) ≤ C dF log(e dF)

for some absolute constant C.

Proof. Since the algorithms in A involve internal randomness (e.g., in the randomized round-
ing step), we formalize the cost function by explicitly treating the random seed as part of
the input. Let Ξ denote the space of internal random seeds. We define the cost function
hf : Π × Ξ → [0, H] as hf (π, ξ) := COST(Af (π; ξ)), where Af (π; ξ) denotes the execution of
the algorithm with predictor f and random seed ξ. We now bound the pseudo-dimension of
the function class H = {hf : f ∈ F} on the augmented domain Π× Ξ.

Fix a finite set of augmented instances S = {(π1, ξ1), . . . , (πm, ξm)} ⊆ Π×Ξ and witnesses
r1, . . . , rm ∈ R. For each f ∈ F , define the labeling vector ℓf ∈ {0, 1}m such that ℓf (j) =
I{hf (πj , ξj) > rj}.

Recall that the algorithm proceeds in three stages: 1. Prediction: x̂ = f(π). 2. Re-
laxation: Compute fractional solution y = Pipeline(π, x̂). 3. Rounding: Compute integral
solution z = Round(y, ξ).

Crucially, for a fixed instance πj and fixed random seed ξj , the final cost COST(z) is
uniquely determined by the prediction x̂j = f(πj). Let Pf ∈ {0, 1}n×m be the prediction
matrix on the underlying instances {π1, . . . , πm}, where [Pf]i,j = fi(πj). Since the mapping
from Pf to the costs on S is deterministic (given the fixed S), the number of distinct labelings
{ℓf} is upper-bounded by the number of distinct prediction matrices {Pf}.

For each coordinate i, let Fi = {fi : f ∈ F} with VCdim(Fi) = di. By Sauer’s
Lemma [Sau72], the number of distinct binary vectors (fi(π1), . . . , fi(πm)) on S is at most∑di

k=0

(
m
k

)
≤ (em/di)

di . Even if the coordinates are coupled, the set of valid prediction ma-
trices is a subset of the Cartesian product of the coordinate-wise projections. Therefore,
the total number of distinct matrices Pf on S is at most the product of the counts for each
coordinate:

n∏
i=1

(
em

di

)di

≤ (em)
∑

di = (em)dF .

Consequently, if S is pseudo-shattered by H, then all 2m possible labelings must be
realizable. Therefore, we must have 2m ≤ (em)dF . Taking logarithms implies m log 2 ≤
dF (logm+1). Standard algebraic manipulation (see, e.g., [AB99]) shows that this inequality
cannot hold if m > CdF log(edF) for a sufficiently large constant C. Thus, Pdim(H) ≤
CdF log(edF).

32

D.2 Proof of proposition 3.1

Proposition 3.1. The expected objective value attained by the cost-optimal oracle f∗
cost sat-

isfies:

P(f∗
cost) ≥ P∗ − Õ

(
nd−1/2√εF

)
.

Proof. The proof proceeds in two steps.
Step 1: Optimality of cost minimization. Recall that the cost function is defined as

COST(Af , π) = H − p(zf (π)), where H is a global upper bound on the objective value. By
definition, f∗

cost minimizes the expected cost, which implies:

E[COST(Af∗
cost

, π)] ≤ E[COST(Af∗
pred

, π)].

Substituting the definition of cost, we obtain:

E[H − p(zf∗
cost

(π))] ≤ E[H − p(zf∗
pred

(π))] =⇒ P(f∗
cost) ≥ P(f∗

pred).

Step 2: Approximation guarantee. We leverage the approximation guarantee estab-
lished in theorem 2.16. For any instance π and prediction x̂, the solution zf (π) satisfies:

p(zf (π)) ≥ p(x∗(π))− C1n
d−1/2

√
∥x̂− x∗(π)∥1 − C2n

d−1/2
√
log n,

where C1, C2 are problem-dependent constants. Taking the expectation over π ∼ D with
f = f∗

pred yields:

P(f∗
pred) ≥ P∗ − C1n

d−1/2E
[√
∥f∗

pred(π)− x∗(π)∥1
]
− Õ(nd−1/2).

Since the square root function is concave, Jensen’s inequality implies E[
√
X] ≤

√
E[X]. Thus,

P(f∗
pred) ≥ P∗ −O

(
nd−1/2√εF

)
− Õ(nd−1/2).

The term involving the prediction error is the dominant factor that the learning algorithm
seeks to optimize. Simplifying the expression using Õ notation to capture the leading order
dependencies completes the proof.

D.3 Proof of theorem 3.3

Theorem 3.3. Let F be a hypothesis space as described in theorem 3.2. For any ϵ > 0 and
δ ∈ (0, 1], if the sample size m satisfies

m ≥ C

(
H

ϵ

)2(
dF log(edF) + log

(
1

δ

))
for some absolute constant C, then with probability at least 1−δ, any empirical risk minimizer
f̂ achieves an excess risk error(f̂) ≤ 2ϵ, and its expected objective value satisfies

P(f̂) ≥ P∗ − Õ
(
nd−1/2√εF

)
− 2ϵ.

33

Proof. Let f∗
cost be the optimal oracle in F that minimizes the expected cost. By lemma D.4,

the ERM algorithm (2ϵ, δ)-learns f∗
cost. This implies that with probability at least 1− δ, the

excess risk satisfies error(Af̂ ;D) ≤ 2ϵ. Substituting the definition of error:

E[COST(Af̂)]− E[COST(Af∗
cost

)] ≤ 2ϵ.

Recalling that COST(Af , π) = H − p(zf (π)), this inequality translates to the objective value:

P(f∗
cost)− P(f̂) ≤ 2ϵ =⇒ P(f̂) ≥ P(f∗

cost)− 2ϵ.

We now invoke proposition 3.1 to lower bound the performance of the cost-minimizing oracle:

P(f∗
cost) ≥ P∗ − Õ

(
nd−1/2√εF

)
.

Combining these two inequalities yields the stated result.

34

E Generalization to Constrained Optimization

In this section, we extend the scope of our investigation from unconstrained optimization to
a more general class of problems involving polynomial constraints. This generalization allows
us to model complex scenarios where decision variables are subject to structural or resource
limitations. Formally, we address the following constrained integer programming problem:

max
x

p(x)

s.t. pc(x) ∈ [Lc, Uc] ∀c ∈ C
x ∈ {0, 1}n,

(d-IP’)

where the objective function p(x) and each constraint function pc(x) (indexed by c ∈ C) are
n-variate polynomials of degree at most d that satisfy the β-smoothness property.

To tackle this problem, we generalize the oracle-guided learning-augmented framework
developed in section 2.3. The central tenet of our approach is to linearize both the objective
function and the polynomial constraints by leveraging the oracle’s prediction x̂. For each
constraint polynomial pc(x), we construct a hierarchical linear approximation analogous to
that of the objective function. Let Ic denote the set of all valid index tuples derived from
the recursive decomposition of pc, and let qc,I(x) represent the linear approximation of the
component pc,I(x) centered at x̂.

We formulate the linear programming relaxation, denoted as (d-LP’), by enforcing lin-
earization guarantees for both the objective and the constraints. Crucially, we incorporate
tolerance bounds δI and δc,I to account for the deviation between the oracle prediction and
the optimal solution.

max
x

q(x)

s.t. qc(x) ∈ [Lc − δc, Uc + δc] ∀c ∈ C
qI(x) ∈ pI(x̂)± δI ∀I ∈ I
qc,I(x) ∈ pc,I(x̂)± δc,I ∀c ∈ C,∀I ∈ Ic
x ∈ [0, 1]n.

(d-LP’)

Here, q(x) and qc(x) are the top-level linear approximations of p(x) and pc(x), respectively.
The tolerances δI and δc,I are determined by the oracle’s accuracy ε = ∥x∗ − x̂∥1 and the
polynomial structure, as defined in section 2.3.1. Specifically, for the top-level constraint
approximation, we set δc =

∑
I∈Ic δc,I .

A fundamental requirement for the validity of this relaxation is that it must admit the
optimal integer solution x∗. We establish this feasibility in the following lemma.

Lemma E.1. Let x∗ be the optimal solution to (d-IP’). Then, x∗ is a feasible solution to the
relaxation (d-LP’).

Proof. For clarity of exposition, we elucidate the proof using the quadratic case (d = 2) for
a single constraint L ≤ pc(x) ≤ U . The argument generalizes straightforwardly to higher-
degree polynomials. Assume, without loss of generality, that the constant term of pc(x) is

35

zero. The polynomial admits the decomposition pc(x) =
∑

i∈[n] xi ·pc,i(x). The corresponding
constraints in the relaxation are:

L− δc ≤ qc(x) ≤ U + δc,

pc,i(x) ∈ pc,i(x̂)± δc,i,
(15)

where δc,i = β
√
n
√
ε and δc =

∑
i∈[n] δc,i. Note that for d = 2, the components pc,i(·) are

linear, so qc,i(·) ≡ pc,i(·).
Substituting x∗ into the component constraints, we observe that pc,i(x

∗) ∈ pc,i(x̂) ± δc,i
holds by the definition of δc,i (cf. lemma 2.7). For the top-level constraint qc(x

∗), we have:

qc(x
∗) =

∑
i∈[n]

x∗i · qc,i(x̂)

∈
∑
i∈[n]

x∗i · [pc,i(x∗) ± δc,i]

∈ pc(x
∗) ± δc ⊆ [L− δc, U + δc].

(16)

The final inclusion follows from the original feasibility pc(x
∗) ∈ [L,U]. Thus, x∗ satisfies all

relaxed constraints.

We solve (d-LP’) to obtain a fractional solution y, and subsequently employ indepen-
dent randomized rounding to recover an integral solution z. We formalize the notion of
approximate constraint satisfaction as follows.

Definition E.2 ([AKK99]). A solution x satisfies a constraint L ≤ pc(x) ≤ U with an
additive error δ if L− δ ≤ pc(x) ≤ U + δ.

The following theorem characterizes the quality of the rounded solution z.

Theorem E.3. The proposed algorithm yields a rounded solution z ∈ {0, 1}n for (d-IP’) in
polynomial time. With probability at least 1−2(|C|+1)d/nk−d+2, the objective value satisfies:

p(z) ≥ p(x∗)− 2ηβnd−1/2√ε− ηβnd−1

√
k + 1

2

√
n lnn,

where x∗ is the optimal solution of (d-IP’), and η = 2e(d− 2) + 1 is a constant respect to d.
Furthermore, for each constraint c ∈ C of degree d′ ≥ 2, the solution z satisfies the constraint
within an additive error of:

∆ = η′βnd′−1/2√ε+ η′βnd′−1

√
k + 1

2

√
n lnn,

where η′ = 2e(d′ − 2) + 1 is a constant respect to d′.

Proof. We analyze the objective value and constraint violations by synthesizing the relaxation
gap analysis with rounding error bounds. Without loss of generality, we assume throughout
this proof that all polynomials are of degree d.

36

Feasibility and Relaxation Gap. According to lemma E.1, the optimal integer solution
x∗ is feasible for (d-LP’). Let y denote the optimal fractional solution to (d-LP’). Following
the derivation presented in theorem 2.12, the objective value of the relaxation satisfies:

p(y) ≥ p(x∗)− 2ηβnd−1/2√ε.

Similarly, for each constraint c ∈ C, since y satisfies qc(y) ∈ [Lc − δc, Uc + δc], we can bound
the deviation of pc(y) from qc(y). Applying the relaxation gap bound to pc(y) yields:

|pc(y)− qc(y)| ≤
∑
I∈Ic

δc,I ≤ ηβnd−1/2√ε.

Consequently, pc(y) satisfies the constraint within an additive error of ηβnd−1/2√ε.

Rounding Error. Invoking theorem 2.13 for the objective polynomial p(x), the following
bound holds with probability at least 1− 2d/nk−d+2:

|p(z)− p(y)| ≤ ηβnd−1

√
k + 1

2

√
n lnn.

An analogous probabilistic bound applies to each constraint polynomial pc(x). By applying
a union bound over the objective function and all |C| constraints, we establish that these
bounds hold simultaneously with probability at least 1− 2(|C|+ 1)d/nk−d+2.

Conclusion. Combining the relaxation gap and the rounding error yields the final perfor-
mance guarantees. For the objective function, we have:

p(z) ≥ p(y)− |p(z)− p(y)| ≥ p(x∗)− 2ηβnd−1/2√ε− ηβnd−1

√
k + 1

2

√
n lnn.

Regarding the constraints, the total additive error is given by the sum of the relaxation
deviation and the rounding deviation:

∆ = ηβnd−1/2√ε+ ηβnd−1

√
k + 1

2

√
n lnn.

37

F Application to MAX-k-CSP

In this section, we demonstrate the applicability of our framework to the MAX-k -CSP prob-
lem. We show that MAX-k -CSP can be naturally formulated as a smooth integer program,
thereby allowing our learning-augmented algorithms to be effectively applied.

It is a well-established result that problems in MAX-SNP can be reduced, via L-reductions,
to MAX-k -CSP for some constant k [PY91; Pap94], while preserving the approximation ratio.
Although specific graph problems such as MAX-CUT admit natural low-degree polynomial
formulations (as illustrated in example 1), the reduction to MAX-k -CSP offers a unified
perspective. Therefore, we focus on modeling MAX-k -CSP within our framework.

A standard arithmetization technique allows us to represent the MAX-k -CSP problem
as a smooth integer program of degree k. Consider an instance with n decision variables
x1, . . . , xn ∈ {0, 1} and m constraints. Each constraint Cj (for j ∈ [m]) is defined over a
subset of k variables and is specified by a Boolean function cj : {0, 1}k → {0, 1}.

To formulate the objective function, we encode each constraint as a polynomial. For a
specific constraint c on variables xS = (xi1 , . . . , xik), we define its polynomial representation
tc(xS) as the sum of indicator polynomials for all its satisfying assignments. Specifically, for
each assignment a ∈ {0, 1}k such that c(a) = 1, the indicator polynomial is:

δa(xS) =
k∏

r=1

xarir (1− xir)
1−ar .

Then, tc(xS) =
∑

a:c(a)=1 δa(xS). The global objective function p(x) is the sum over all m
constraints:

p(x) =
m∑
j=1

tcj (x).

This function is a polynomial of degree at most k.
To analyze the smoothness of p(x), we introduce a parameter M that captures the “local

density” of the constraints. We define M as the maximum number of constraints defined on
any single set of k variables. Intuitively, M measures the multiplicity of constraints sharing
the same variable scope.

• For MAX-CUT on simple graphs, any pair of vertices has at most one edge, so M = 1.

• For MAX-k -SAT you might have multiple clauses involving the same set of variables
(e.g., x1 ∨ x2 ∨ x3 and ¬x1 ∨ x2 ∨ x3). Since there are 2k possible distinct clauses over
k variables, if we assume no duplicate identical clauses, M ≤ 2k .

We now establish that the objective function p(x) is smooth, with the smoothness pa-
rameter β depending on M and k.

Theorem F.1. The polynomial objective p(x) derived from a MAX-k-CSP instance is β-
smooth for any β ≥M2k.

38

Proof. Let p(x) =
∑m

j=1 tcj (x). We analyze the coefficients of the monomials in the expansion
of p(x) by bounding the contribution from each constraint.

First, observe that for any single constraint c on a set of k variables, the polynomial tc(x) is
a sum of at most 2k terms of the form δa(x). The expansion of each δa(x) produces monomials
with coefficients ±1. Consequently, the magnitude of the coefficient of any monomial in the
expansion of a single constraint tc(x) is bounded by 2k.

We now bound the coefficients of the global objective p(x) by considering two cases based
on the degree l of the monomials.

• Case 1: Monomials of degree l = k. Consider a monomial involving a specific set of
k variables, say S. This monomial can only appear in the polynomials tcj (x) corre-
sponding to constraints defined exactly on the variable set S. By the definition of M ,
there are at most M such constraints. Since the coefficient of the monomial in each
such tcj (x) is bounded by 2k, the magnitude of the coefficient for this monomial in p(x)
is bounded by M2k. This satisfies the β-smoothness condition |cS | ≤ βnk−k = β for
β ≥M2k.

• Case 2: Monomials of degree l < k. Consider a monomial defined by a set S of l
variables. This monomial contributes to the expansion of a constraint defined on a set
T of k variables only if S ⊂ T . To form such a superset T , we must select k−l additional
variables from the remaining n− l variables. Thus, the number of such supersets T is(
n−l
k−l

)
. For each set T , there are at most M constraints. Using the bound of 2k for the

coefficient from each constraint, the coefficient of the monomial corresponding to S in
p(x) is bounded by:

M2k ·
(
n− l

k − l

)
≤M2k · nk−l

(k − l)!
≤M2knk−l.

This satisfies the β-smoothness requirement |cS | ≤ βnk−l provided that β ≥M2k.

Combining both cases, we conclude that p(x) is β-smooth for any β ≥M2k.

39

	Introduction
	Our Contributions

	Approach
	Preliminaries
	The Quadratic Case
	Oracle-guided Relaxation
	Analysis of the Relaxation Gap
	Randomized Rounding
	Comprehensive Guarantee

	Generalization to Higher Orders
	Oracle-guided Relaxation
	Analysis of the Relaxation Gap
	Rounding
	Overall Guarantee

	Algorithmic Framework

	Learnability of Oracles
	Setup
	ERM Guarantees

	Applications
	Concluding Remarks
	Related Work
	Approximation Algorithms
	Learning-augmented algorithms
	Data-driven algorithm selection
	Smooth integer programs

	Detailed Algorithmic Subroutines
	Hierarchical Decomposition
	Running Example

	Relaxation

	Omitted Material for the Approximation Framework
	Properties of Smooth Polynomials
	Analysis of the Quadratic Case
	Proof of thm:rounding-error-quadratic
	Proof of thm: comprehensive-guarantee-quadratic
	Proof of thm:relaxation-gap
	Omitted Results for General Case
	Proof of thm:deterministic-rounding-monotone

	Omitted Material for Learnability Guarantees
	Standard Definitions and Results
	Proof of prop:optimality-transfer
	Proof of thm:erm-learnability

	Generalization to Constrained Optimization
	Application to MAX-k-CSP

