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Under what conditions can concept risk (1) be minimized through empir-
ical risk minimization over NeSy risk (2) as sample size — oo ?

Neuro-symbolic learning (NeSy) unifies data-driven learning with knowl-
edge-based reasoning, marking a paradigm shift often regarded as the
third wave of Al. Its ability to incorporate formal knowledge makes it
especially significant for high-stakes domains such as law, medicine, and
finance.
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Usually, the training process of NeSy system is weakly-supervised manner, 6-0:

i.e., learning model f with only (x, y) pairs and background knowledge KB
to be satisfied.
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Figure 1: A typical inference process of neuro-symbolic system.
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Figure 2: An unlearnable case

Motivation: Determining the learnability of a NeSy task is crucial for under-
standing how a NeSy system works and for inspiring the development of

The objective is to learn a model f : X — &< that generalizes on concepts: more principled and powerful algorithms.

I(f(z) # 2)]. (1)
However, in the absense of supervision z, only the surrogate is accessible:

RNeSy(f) 4:(ac,y) [I[(f(m) A KB ¥ y)] (2)

Reasoning Shortcut: [1] identified the RS problem — models achieve high
training likelihood while deviating from true concept distributions. While
approaches exist to address RSs [2,3], a rigorous theoretical framework
connecting RSs to statistical learnability remains underexplored.

Yz, 2)

R0/1 —

LEARNABILITY IS DECIDED BY DCSP SOLUTION SPACE

» |f the derived constraint satisfaction problem has a unique solution, the task is learnable.
» Otherwise, the task is unlearnable, the expected concept risk is bounded by the disagreement degree among solustions.

NeSy Task‘
SumMod10 (. BY) =1

10

base

# Create integer variables

Derived CSP‘

SumMod10 (E},EJ) = O Xo, X1, w, Xo € [0, k-1]

# Two solutions
# [0’ 1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9]
soll = {Xe:0, X1:1, .., Xo:9}

DCSP Solutions‘

Learnability

Unlearnable

# [5, 6, 7, 8, 9, 0,
sol2 = {Xe:5, X1:6,

1, 2, 3, 4]

wy, Xo:i4} &*<d/L=10/10 =1

all Xi are distinct
w, Xo)

# Constraint 1:

SumMod10 (F1L.E) =1 all different(Xe, Xi,

Solve _
# Disagreement among soll and sol2

# Constraint 2: modular addition rules d = disagreement(soll, sol2) # 10
for each pair (i, j) with i < j:

(Xi + Xj;) mod base = (1 + j) mod base

Modular Addition
Yy = (21 + 25) mod 10

Figure 3: An example of learnability decision procedure.

Formal Description Experiments

Mod Addition k=9 Mod Addition k=8 Mod Addition k=6 Mod Addition k=4 Mod Addition k=2
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Figure 4: Accuracies vesus sample size.
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» Unlearnable NeSy tasks can be combined to be learnable (if their
combined DCSP has unique solution).
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Figure 5: Combination of unlearnable NeSy tasks.
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