

Neuro-Symbolic Learning

Neuro-symbolic learning (NeSy) unifies data-driven learning with knowledge-based reasoning, marking a *paradigm shift* often regarded as the *third wave of AI*. Its ability to incorporate formal knowledge makes it especially significant for *high-stakes* domains such as law, medicine, and finance.

Usually, the training process of NeSy system is weakly-supervised manner, i.e., learning model f with only (x, y) pairs and background knowledge KB to be satisfied.

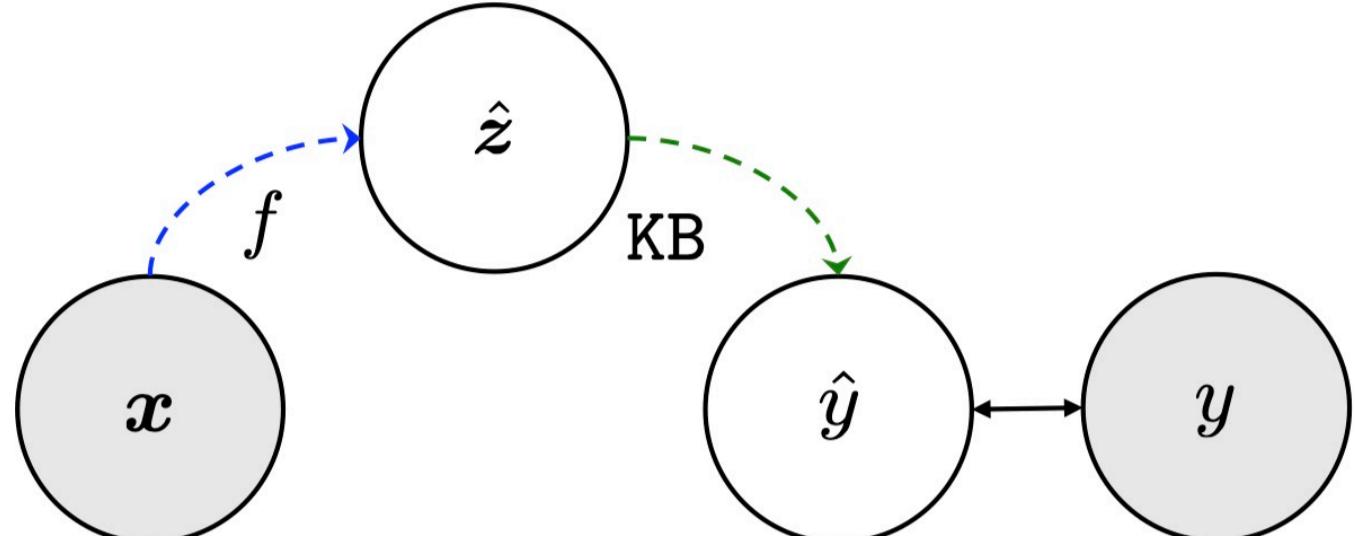


Figure 1: A typical inference process of neuro-symbolic system.

The objective is to learn a model $f : \mathcal{X} \rightarrow \mathcal{Z}$ that generalizes on concepts:

$$R_{0/1} = \mathbb{E}_{(x,z)}[\mathbb{I}(f(x) \neq z)]. \quad (1)$$

However, in the absence of supervision z , only the surrogate is accessible:

$$R_{\text{NeSy}}(f) = \mathbb{E}_{(x,y)}[\mathbb{I}(f(x) \wedge \text{KB} \models y)]. \quad (2)$$

Learnability

Under what conditions can concept risk (1) be minimized through empirical risk minimization over NeSy risk (2) as sample size $\rightarrow \infty$?

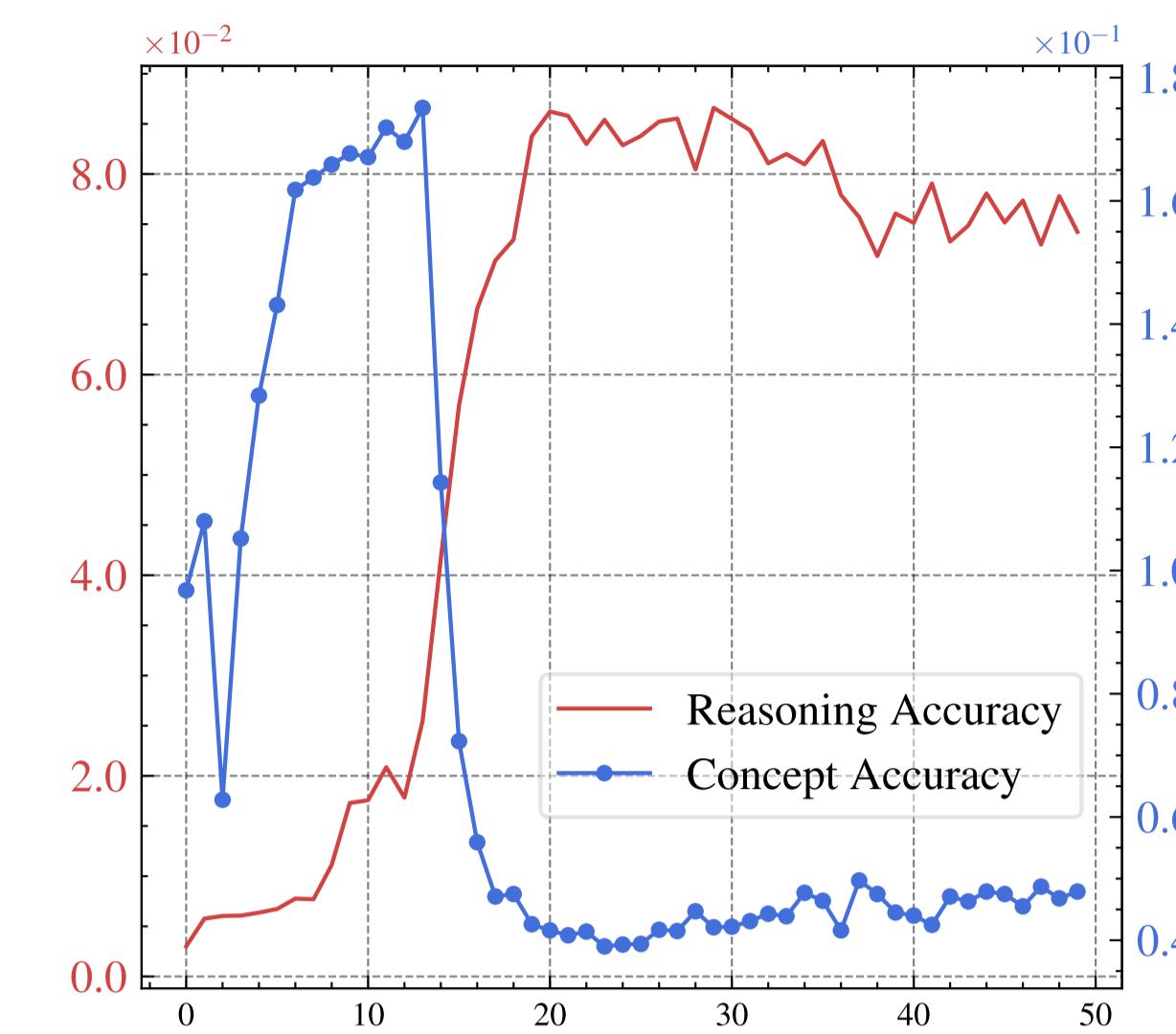


Figure 2: An unlearnable case

Motivation: Determining the learnability of a NeSy task is crucial for understanding how a NeSy system works and for inspiring the development of more principled and powerful algorithms.

Reasoning Shortcut: [1] identified the *RS problem* — models achieve high training likelihood while deviating from true concept distributions. While approaches exist to address RSs [2,3], a rigorous theoretical framework connecting RSs to statistical learnability remains underexplored.

LEARNABILITY IS DECIDED BY DCSP SOLUTION SPACE

- If the derived constraint satisfaction problem has a *unique* solution, the task is *learnable*.
- Otherwise, the task is *unlearnable*, the expected concept risk is bounded by the *disagreement* degree among solutions.

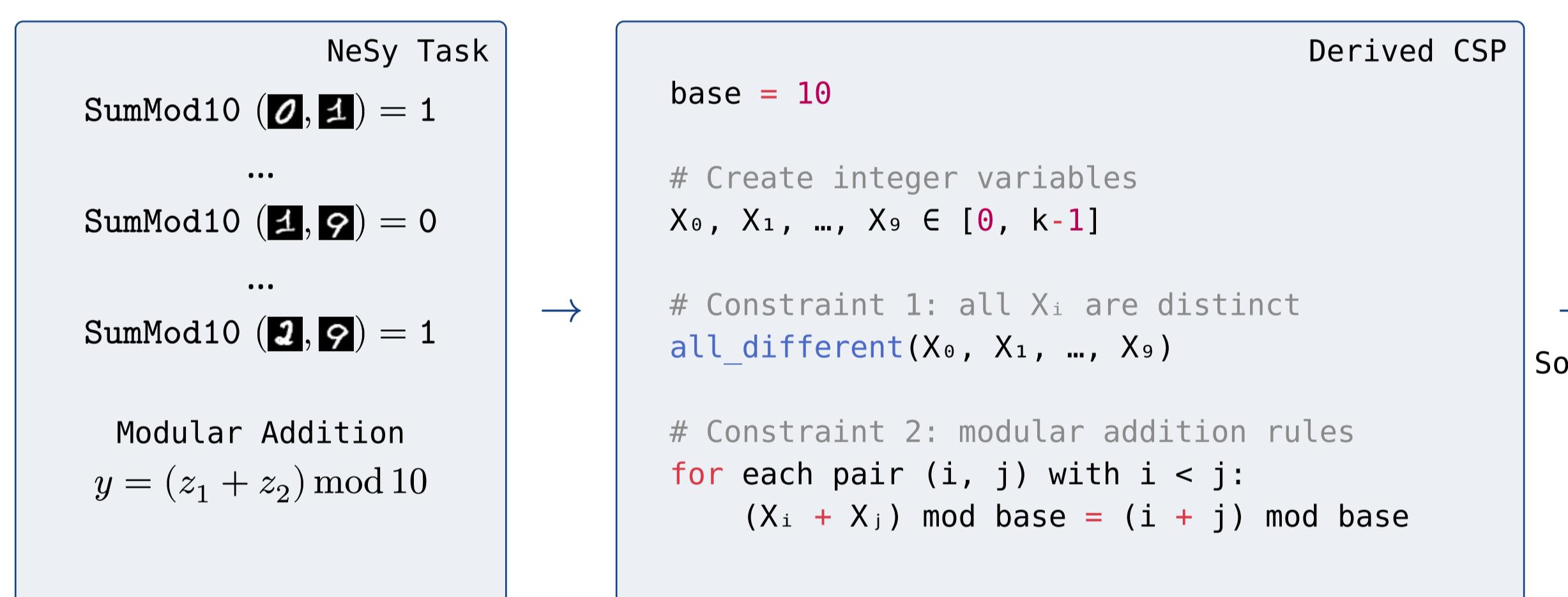
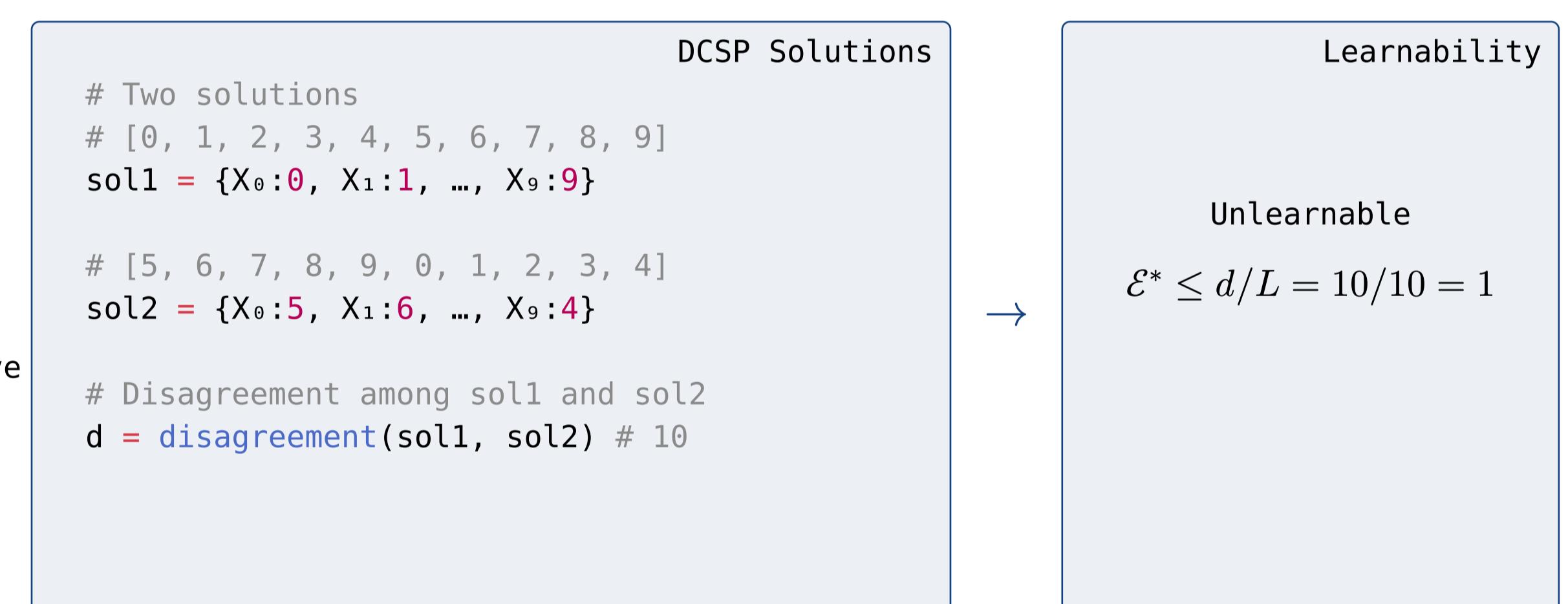


Figure 3: An example of learnability decision procedure.

Formal Description

Theorem: Given a NeSy task \mathcal{T} , the learnability is decided by the solution space of DCSP. Especially:

- If the DCSP has unique solution, \mathcal{T} is learnable, and the concept risk $R_{0/1} \leq \varepsilon$ when the sample size

$$N \geq \frac{1}{\kappa} \cdot \log(|\mathcal{B}|/\varepsilon) \quad (3)$$

- Otherwise, \mathcal{T} is unlearnable, the expected concept risk

$$\mathcal{E}^* \leq d/L \quad (4)$$

Experiments

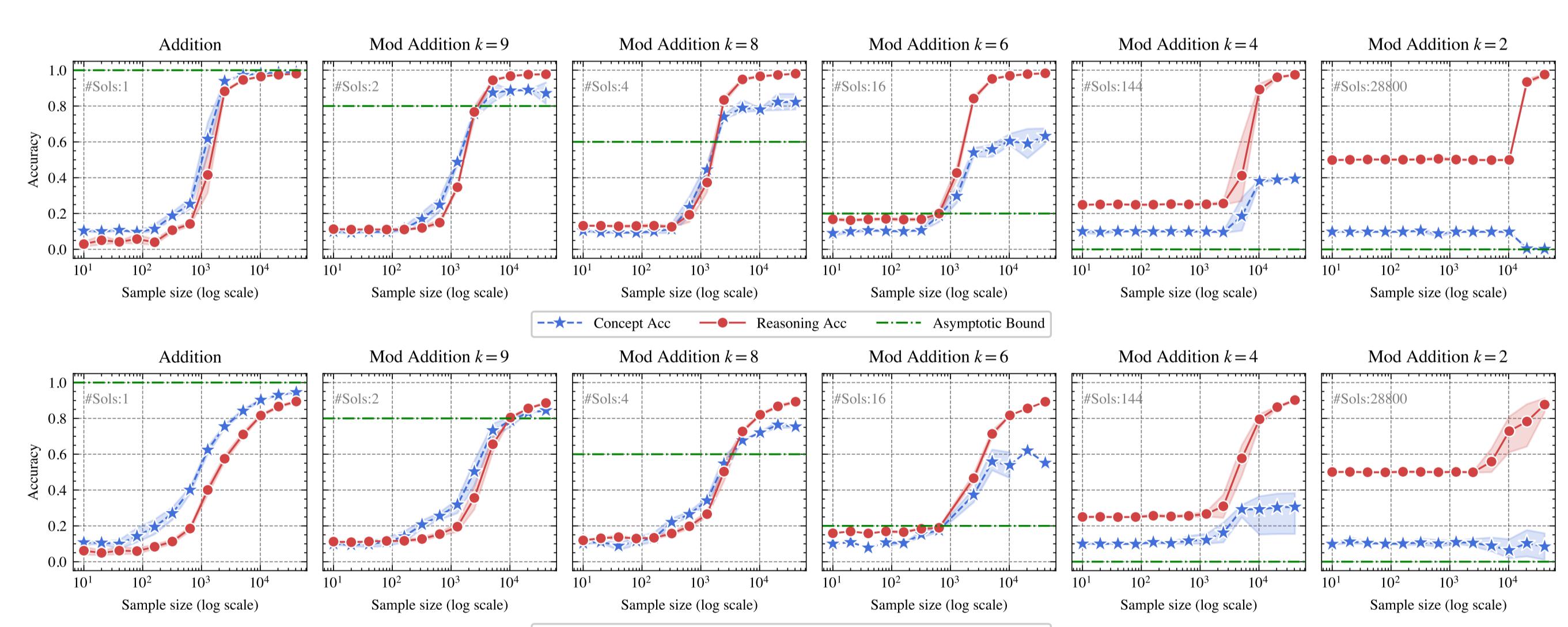


Figure 4: Accuracies versus sample size.

Implications

- Expected concept risk depends on the *disagreement* among DCSP solutions rather than #solutions (#RSs)
- Unlearnable NeSy tasks can be combined to be learnable (if their combined DCSP has unique solution).

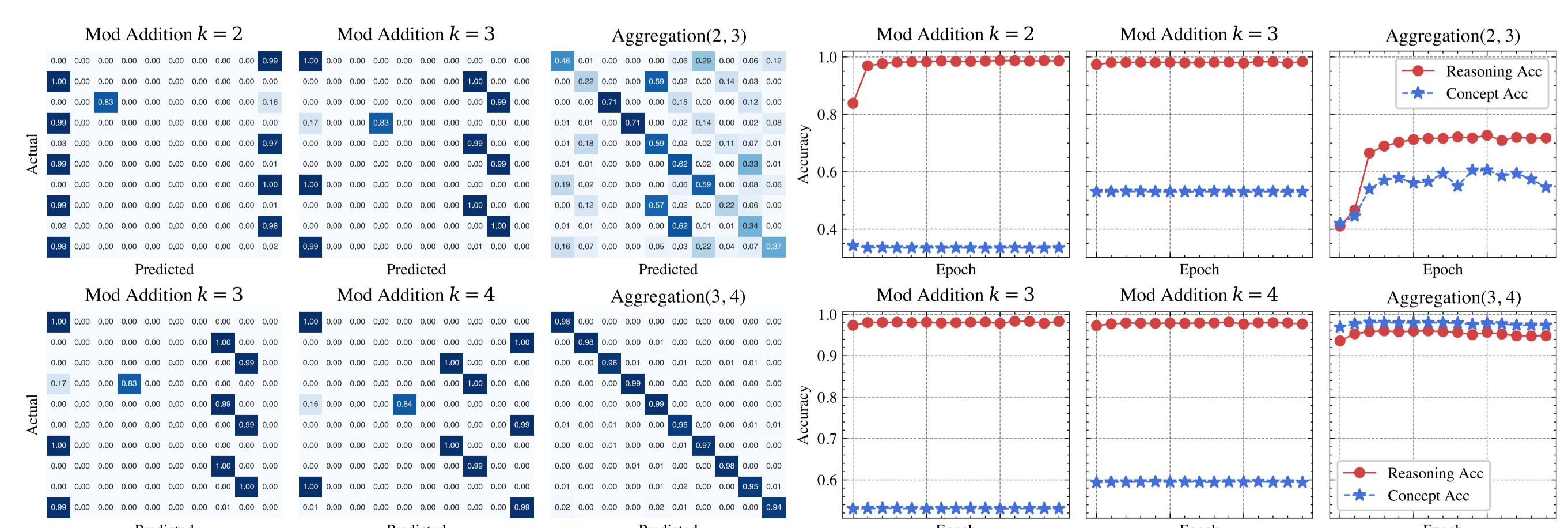


Figure 5: Combination of unlearnable NeSy tasks.

