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Abstract

This paper presents a comprehensive theoretical analysis of the learnability of
neuro-symbolic (NeSy) tasks within hybrid systems. We characterize the learn-
ability of NeSy tasks by their derived constraint satisfaction problems (DCSPs),
demonstrating that a task is learnable if and only if its corresponding DCSP admits
a unique solution. Under mild assumptions, we establish the sample complexity
for learnable tasks and show that, for general tasks, the asymptotic expected con-
cept error is controlled by the degree of disagreement among DCSP solutions.
Our findings unify the characterization of learnability and the phenomenon of rea-
soning shortcuts, providing theoretical guarantees and actionable guidance for the
principled design of NeSy systems.

1 Introduction

Neuro-symbolic learning (NeSy) seeks to integrate data-driven learning with knowledge-driven rea-
soning within a unified framework (Hitzler & Sarker, 2022; Marra et al., 2024). State-of-the-art
NeSy approaches predominantly employ hybrid systems that map input queries  to concepts £ via
a learning model, subsequently utilizing a symbolic system KB to deduce the final answer ¢. Feed-
back from KB—such as pseudo-labels in abductive learning (ABL) (Zhou, 2019; Dai et al., 2019) or
weighted model counting in DeepProbLog (Manhaeve et al., 2018, 2021a)—guides further learning.
This paradigm has found broad application in domains including puzzle solving, code generation,
and autonomous path planning (Jiao et al., 2024; Li et al., 2024; Hu et al., 2025a).

A central challenge in NeSy is that systems are typically trained end-to-end in a weakly supervised
manner, relying solely on (,y) pairs, with the underlying concepts z remaining unobserved. The
objective is to learn a model f : X — Z that generalizes effectively, minimizing the concept risk:

R()/l(f) = ]E(z,z) [L(f(x) # 2)]-

However, in the absence of supervision z, only the surrogate NeSy risk is accessible:

RNeSy(f) = IE(w,y) []I (f(il?) N KB % y)] .
This motivates a fundamental question regarding the learnability of NeSy tasks:

Under what conditions can the concept risk be minimized through empirical risk minimization
over the NeSy risk, given a finite sample set as its size approaches infinity?

Recently, Marconato et al. (2023b) identified the reasoning shortcut problem, wherein a reason-
ing shortcut (RS) refers to a concept distribution that achieves maximal likelihood on training data
yet deviates from the true underlying concept distribution. This phenomenon is closely related to
the statistical learnability of NeSy systems, as models may minimize empirical NeSy risk without
necessarily minimizing the concept risk. While several approaches have been proposed to address
reasoning shortcuts Marconato et al. (2023a, 2024), a rigorous theoretical framework connecting
RSs to the statistical learnability of NeSy tasks remains underexplored.
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To address this gap, we analyze the learnability of the NeSy task within the probably-approximately-
correct (PAC) framework (Valiant, 1984), focusing on restricted hypothesis spaces (cf. section 3.3).
Our key insight is to formulate NeSy tasks as derived constraint satisfaction problems (DCSPs): a
task is learnable if and only if its DCSP has a unique solution.

We further introduce disagreement d among DCSP solutions as a finer-grained measure of uncer-
tainty. For learnable tasks, we establish the sample complexity 1/« - log (|B|/¢), where &, |B| are
task-specific and € is the desired concept error (cf. theorem 3.6). For general NeSy tasks, we derive
an upper bound on the expected concept error, showing it is bounded by d/ L, where L is the concept
space size (cf. theorem 3.7). Moreover, with the DCSP perspective, we find that aggregating un-
learnable tasks in a multi-task learning manner reduces the degree of ambiguity, thereby enhancing
overall task learnability.

Our analysis aligns with the RS phenomenon (Marconato et al., 2023a,b), wherein models may
achieve low empirical risk yet incur high concept risk. The existence of deterministic RSs corre-
sponds to the presence of multiple DCSP solutions. We show that concept error correlates more
strongly with solution disagreement than with the number of solutions (cf remark 1), underscoring
disagreement d as a more informative indicator.

In summary, our contributions are as follows:

* We establish a rigorous theoretical foundation for NeSy learnability within the hybrid systems
paradigm and derive both sample complexity and asymptotic bounds on concept error.

* The DCSP framework proposed facilitates intuitive analysis of learnability using CSP solvers,
while solution disagreement provides a detailed perspective on concept error analysis.

» Empirical studies are conducted to validate our theoretical findings.

The remainder of the paper is organized as follows: Section 2 reviews the background and related
work on NeSy. Section 3 presents our theoretical analysis of NeSy task learnability. Section 4
details empirical validations of our theoretical results. Section 5 discusses limitations, and section 6
concludes the paper.

2 Preliminaries

This section first introduces the problem setup of neuro-symbolic learning, followed by a presen-
tation of the two principal neuro-symbolic methods: probabilistic neuro-symbolic learning and
abductive learning. Subsequently, we discuss the most related works, including those on reason-
ing shortcuts and theoretical analyses of NeSy.

2.1 Problem Setup

A typical hybrid neuro-symbolic system consists of two components: a machine learning model
(e.g., a neural network) and a logical reasoning model (e.g., a first-order logic solver). The learning
model f : X — Z maps an instance z (e.g., image, text, or audio) from the input space X to an in-
termediate concept z (e.g., primitive facts or predicates) within the symbol space Z, where |Z| = L.
The reasoning model KB consists of rules over the concept space and can be implemented using any
logic-based system, such as ProbLog (De Raedt et al., 2007) or answer set programming (Dimopou-
los et al., 1997). Assume that a labeling function g : X — Z exists such that z = g(x). The
learning model, belonging to a hypotheses family F, is parameterized by 6, and py(-) represents the
likelihood estimated by the model, where f(z) = arg max.cz po(z | ).

During inference, the learning model f accepts multiple instances as a sequence © = (1, ..., Ty)
and outputs a sequence of concepts 2 = (21, ..., 2,,). The output 2 is then passed to the reasoning
model KB, which infers the final label y € ) through logical entailment, i.e., ZAKB |= y. To simplify
the inference process of KB, we represent it by a logical forward operator o (+) such that 0(2) = y. In
a standard neuro-symbolic learning setup (Dai et al., 2019; Manhaeve et al., 2021a; Li et al., 2023;
Marra et al., 2024), the training data {(z;, y;) } ¥, are sampled from data distribution D = (X™, ))).
Therefore, a neuro-symbolic task can be formally defined as a triple 7 = (X, ), KB).

Example 1 (Addition). The input z € X2, where X denotes digit images. The concepts Z consist

of digits from 0 to 9. The data takes the form (fg, ) — 1, with the logical forward function
o(+) := SUM(+, -) . The label space ) is defined as the addition results, i.e., from O to 18.



Note that when all final labels y are identical (e.g., z A KB |= T), as in the case of code generation
where all code must satisfy a syntax constraint (Jiao et al., 2024), the final label y can be omitted for
simplicity. The analysis presented in this paper can be easily adapted to such cases.

The success of NeSy systems highly depends on the recognition of intermediate concepts. To eval-
uate the concept-level performance, we define the concept risk as follows:

Roj1(f;9) = Ex [I(f(z) # g())] . (D

For simplicity, we omit g and denote (1) as Ry, (f). However, optimizing (1) is challenging due to
the lack of supervision regarding the intermediate concept.

2.2 Neuro-Symbolic Methods

To minimize the concept risk (1), the key idea of current NeSy methods (Manhaeve et al., 2018;
Dai et al., 2019) is to optimize the neuro-symbolic risk as a surrogate, which aims to minimize the
discrepancy between the learning and reasoning models.

Ryesy(f) = Eay) [1(f(x) AKB F~ y)]. 2)

The optimization process is to select the optimal f* € F that minimizes the NeSy risk; that is:
= in RNe . 3
f arg g}gg N Sy(f) 3)

Probabilistic Neuro-Symbolic Learning. Probabilistic neuro-symbolic learning (PNL, Man-
haeve et al. 2021b) methods adopt reasoning models via probabilistic logic programming, such as
DeepProblog (Manhaeve et al., 2018, 2021a), NeurASP (Yang et al., 2020), and Scallop (Li et al.,
2023). Since the NeSy risk (2) is non-continuous, PNL aims to minimize the following objective:

_E(m,y)p [y | ZT; fv KB] . “4)
Reformulating (4), we can express the objective as follows:
mylogz ZAKBl=y)-pz | a; f,KB]. )

Equation (5) is referred to as the probablllstlc neuro-symbolic learning risk, denoted as Rpnr(f).

The key operation for calculating the PNL riskis ) I(2AKB |= y)-p [z | «; f,KB], also well-known
as weighted model counting (WMC), which requires enumerating all possible worlds that satisfy the
constraints of the symbolic system. This operation can be performed using various approaches,
such as ProbLog (De Raedt et al., 2007), answer set programming Dimopoulos et al. (1997), and so
on. However, in general, the computational complexity of WMC is #P (Maene et al., 2024), which
makes PNL methods challenging to scale.

Abductive Learning. Unlike PNL methods, abductive learning methods (ABL) (Dai et al., 2019;
Huang et al., 2021; Hu et al., 2025a) infer the most plausible concepts through abductive reasoning
and use them to update the model. The objective of ABL is to minimize the risk:

RABL(f) = _E(m,y) 1Og (p [ya z ‘ T3 fa KB]) ) (6)
where Z = min_¢ 4(,) Score(z, f(x)) represents the most likely candidate in the abduction set. The
abduction set A(y) includes all possible concepts z that satisfy the constraints of KB and have a

non-zero measure, i.e., p[z] > 0. The score function measures the alignment between a candidate z
and the model’s prediction f(x). For instance, Dai et al. (2019) use the Hamming distance.

ABL enhances computational efficiency by concentrating on the most plausible candidates, thereby
avoiding the enumeration of all possible worlds. However, the inherent ambiguity of abduction can
lead to incorrect candidate selection, introducing bias into the learning process (He et al., 2024b).

We now present a unified perspective: both PNL and ABL approaches are capable of effectively op-
timizing (2), thereby allowing the analysis to be uniformly applicable to both methods. Accordingly,
we formally state the following theorem, with its proof provided in section B.1.

Theorem 2.1. A minimizer of Rpni or Rupy is also a minimizer of Ryesy. For each surrogate
R, € {RPNLa RABL}y we have:

in R,(f) C in Ryes,
arg min s(f)_arg}gg Nesy(f)



2.3 Related Works

Here we review related works below that focus on reasoning shortcuts and the theoretical analysis of
neuro-symbolic learning. A more comprehensive review of related works is available in section A.

Reasoning Shortcuts. A reasoning shortcut (RS) is formally defined as a distribution that max-
imizes the training likelihood while deviating from the true concept distribution (Marconato et al.,
2023b). To address RS, a variety of mitigation strategies have been proposed, including contin-
ual learning paradigms that structure tasks sequentially to promote knowledge retention (Marconato
et al., 2023a), entropy regularization to encourage more faithful concept representations (Marconato
et al., 2024), and the development of dedicated benchmarks for systematic evaluation (Bortolotti
et al., 2024). Recent works have also introduced new metrics and theoretical analyses to better
characterize and quantify shortcut risks (Yang et al., 2024). Despite these advances, a comprehen-
sive theoretical understanding of RS remains limited, particularly regarding the specific concept
error analysis under the statistical learning framework. Our work builds upon these foundations by
providing a unified theoretical framework that elucidates the learnability of neuro-symbolic tasks,
offering new insights into this phenomenon.

Theoretical Analyses. Prior theoretical frameworks, such as multi-instance partial label learning
with the M -unambiguity condition (Wang et al., 2023), provide concept error bounds based on the
VC-dimension. However, this analysis assume repetitive input patterns, such as [z, z, ... ], thereby
limiting the applicability to real-world scenarios that require heterogeneous predicates and facts
as logical inputs. Tao et al. (2024) examine scenarios where randomly selecting abduction can-
didates results in a consistent optimization objective within the ABL framework. They formulate
the learning process as a weakly supervised learning problem and analyze its consistency through
a probabilistic matrix (). However, construction of such a matrix ) requires full knowledge of
the underlying concept sequence distribution, which is not easily obtainable. Additionally, Yang
et al. (2024) introduce a shortcut risk metric 17, to quantify the discrepancy between true risk and
surrogate risk. While they establish error bounds for this metric, a low shortcut risk does not neces-
sarily guarantee a low concept error. Thus, a comprehensive theoretical analysis of the concept error
remains lacking.

In summary, our work advances the field by providing a unified and comprehensive theoretical
framework for analyzing the learnability of neuro-symbolic learning tasks. We establish necessary
and sufficient conditions for learnability under mild assumptions, introduce a constraint satisfac-
tion perspective that enables systematic verification, and derive meaningful error bounds even in
unlearnable cases.

3 Learnability Analysis

In this section, we examine the learnability of neuro-symbolic (NeSy) tasks, specifically whether
the concept risk can be minimized via empirical risk minimization (ERM) over the NeSy risk as
the sample size approaches infinity. While learnability is attainable in certain scenarios, it is not
universally guaranteed. To elucidate the underlying reasons, we conduct a rigorous learnability
analysis to address the question: Which classes of NeSy tasks are learnable?

Analogous to the standard probably approximately correct (PAC) learning framework (Valiant,
1984), we formalize the learnability of a NeSy task as follows:

Definition 3.1. Let N denote the size of samples drawn i.i.d. from D, T represent a NeSy task, and
F denote the hypothesis space. We say that 7T is learnable if: for any 0 < ¢, § < 1 and distribution
D, there exists an algorithm 4 and an integer N, s such that, whenever N > N ;, the selected

hypothesis f = A(D) satisfies p[Ro1 (f) < €] > 1 — 4. Otherwise, we say that it is unlearnable.

Our analysis focuses on the ERM algorithm as .4, given its proven efficacy in common learning
settings such as supervised classification and regression, where a problem is learnable if and only if
it is learnable by ERM (Blumer et al., 1989; Alon et al., 1997).



3.1 Restricted Hypothesis Space

Unlike conventional supervised learning, which learns a hypothesis = — y from pairs (z,y), a
NeSy task seeks a mapping @ +— z from pairs (x,y), where z denotes latent symbolic vari-
ables constrained by the reasoning module. Ideally, each y determines a unique z; that is,
Yy € Y, |A(y)| = 1. In this case the task reduces to a standard learning problem (Vapnik, 1999). In
practice this is rarely true: many y admit multiple feasible solutions =z, ..., zj, making the task in-
herently ambiguous. We call the task ambiguous if there exists y € ) with |A(y)| > 2. In statistical
learning theory, the complexity of a hypothesis space is characterized by the notion of shattering.

Definition 3.2 (Shattering). A hypothesis space F shatters a finite set X = {x1,...,z,} with
respect to a label space Z if, for every labeling function ¢ : X — Z, there exists a hypothesis f € F
such that f(x;) = €(z;) forall z; € X.

Using this notion, we obtain the following proposition.

Proposition 3.3. For an ambiguous NeSy task T, if the hypothesis space F shatters the task, then
there exists a hypothesis f* that minimizes Ry.s, but does not minimize Ryy;.

The proof is provided in section B.2. Proposition 3.3 suggests that ambiguous NeSy tasks may be
unlearnable when the hypothesis space is very complex, such as nearest neighbor, whose Vapnik-
Chervonenkis dimension is infinite (Karacali & Krim, 2003), or deep neural networks (Bartlett &
Maass, 2003) without any regularization terms. This issue arises due to overfitting caused by the high
memorization capacity of models (Zhang et al., 2021). Previous studies emphasize the importance of
constraining the hypothesis space in NeSy tasks (Yang et al., 2024). For example, pre-training mod-
els or self-supervised learning methods (Sohn et al., 2020) have been shown to promote clustering
properties in neural networks, further enhancing generalization performance.

Consider a scenario where a pre-trained model satisfies a clustering property (Huang et al., 2021),
meaning that instances representing the same concept are grouped together in feature space. In
the ambiguous task described in example 1, if the model correctly processes a key sample such as
SuM(E, ) = O, it can reliably identify 0. This, in turn, simplifies subsequent tasks. For example,
once the model recognizes SUM(E, Bl) = 1, it can correctly identify 1. By iteratively applying this
process, the model can learn to recognize all relevant concepts despite initial ambiguity.

The above process highlights the need to restrict the hypothesis space for the learning system. This
hypothesis space ensures consistent mappings between concepts and labels. Let ™ be a restricted
hypothesis space which ensures that instances with the same label correspond to the same concept,
and vice versa. Given the labeling function g, formally, for any f € F*:

Vo, € X, g(xr) = g(x2) <= f(x1) = f(22).

3.2 Derived Constraint Satisfaction Problem

The restricted hypothesis space implicitly partitions the raw input space X" into L clusters. We use
(x); to denote the cluster {z | x € X, f(x) = ¢}. The learning process is to establish a mapping
between the clusters {(z)1, ..., (z)1} and Z that minimizes the NeSy risk. This process inherently
transforms the NeSy learning problem into a constraint satisfaction problem (CSP). In this paper,
we refer to it as a derived CSP (DCSP).

The derived constraint satisfaction problem for a NeSy task 7 is defined as a triple (V,D, C),
where: V = {Vq,...,VL} are the variables, D = {D; = Z,...,D; = Z} are the domains,
and C = {C},...,Cy} are the constraints. Each V; corresponds to a mapping from (z), to a con-
cept label. For convenience, we slightly abuse notation by letting V() denote a mapping from an
input sequence to the corresponding concept sequence determined by the mapping set V. Each C;
corresponds to a constraint (x;, y;), e.g., V(x;) AKB |= y; . Solving the DCSP is to find a consistent
assignment [ that satisfies all constraints.

A DCSP solution I corresponds to an assignment of values to variables, expressed as I =
{(V1,v1),...,(VL,vr)}, where each v; is the value assigned to the variable V;. For simplicity,
we denote the solution as I = (vy,...,vr) by omitting the variables. Here we only discuss the
case when the DCSP has solution; Otherwise, the learning model will inevitably conflict with the
background KB.



3.3 Conditions of Learnability

In general, the solution to a DCSP may not be unique, i.e., multiple distinct solutions may exist.
We denote the solution space as S = {I1,..., I }. To characterize the relationships among these
solutions, we define an operation Union(), which captures the common assignments among the
solutions. When the input set consists of a single element, this operation simply returns that element.
The DCSP solution disagreement d quantifies the inconsistency among all solutions:

d = L — |Union(S)|.

The disagreement d measures the number of variables whose values differ across the solutions in
S. If d = 0, i.e., |S| = 1, there is a unique solution. In this case, the optimal hypothesis can be
identified by minimizing the NeSy risk. Formally, we have:

Lemma 3.4. For a NeSy task T, if the DCSP solution disagreement d = 0, then the NeSy risk is
consistent with the concept risk. Formally, for any f € F:

RNgSy(f) -0 — Ro/](f) — 0.

Proof Sketch. The direction from the right-hand side to the left-hand side is straightforward; here,
we focus on proving the reverse direction. We demonstrate this by showing that if the concept risk
is non-zero, then the NeSy risk cannot be zero (contraposition). If the concept risk is non-zero, there
must be at least one misclassified instance where f assigns an incorrect label. Given that the DCSP
solution is unique and there is no disagreement (i.e., d = 0), any such misclassification directly
results in a non-zero NeSy risk. Therefore, if the NeSy risk is zero, it follows that the concept risk
must also be zero. O

The detailed proof is in section B.3. To proceed, we introduce the following mild assumption.

Assumption 3.5. The set of possible concept sequences, B = |, ¢y A(y), where A(y) is the set
of valid concept combinations for label y, has finite cardinality; and the probability of sampling a
concept sequence is at least k > 0

With this assumption, we formally present the main result of this paper as follows.

Theorem 3.6. For a neuro-symbolic task T with a restricted hypothesis space F*, learnability is
determined by the following conditions:

e [f the derived constraint satisfaction problem has a unique solution, the task is learnable. Specif-
ically, the concept error is bounded by €, provided that the sample size N satisfies:

1
N > — log (|B]/€) .

e Otherwise, the task is unlearnable.

The proof is in section B.4 . Theorem 3.6 establish that a NeSy task 7 is learnable if and only if the
DCSP solution is unique, i.e., disagreement d = 0. Conversely, if the DCSP has multiple solutions
(i.e., d > 1), the task is unlearnable, implying that concept error remains unavoidable regardless of
additional training data.

Building upon the concept of DCSP solution disagreement, we derive a more general theorem
offering deeper insights into learning errors in a restricted hypothesis space F*. As the sample
size approaches infinity, the hypotheses learned via ERM asymptotically converge to: Fppy =
arg minger» Rnesy(f). The average error of the ERM result, denoted by £, is the expected con-
cept risk of an arbitrarily selected hypothesis: £* = Efer:  [Ron(f)] -

Theorem 3.7. The average error £* is bounded by:

& <

I

The proof is in section B.5. Theorem 3.7 provides an asymptotic error analysis for NeSy tasks,
indicating that as the DCSP solution disagreement d increases, the upper bound of the concept error
also increases. Revealing that the disagreement d is crucial to the learnability of NeSy tasks.



3.4 Examples

Here, we present examples to better understand

the learnability conditions of a NeSy task. To il- Table 1: Examples of (un)learnable tasks.
lustrate the distinction between learnable and un-

learnable tasks, we use digital images as input ;. . = Additon Y=z +2
data. We model the data as * = (x1,22) € Multiplication Y=z X2
X2, where X represents the space of digit im-  yniearnaple EXClusive OR y=29n

Modular Addition y = (21 + 22) mod k

ages (e.g., {H, B, - - - })- The intermediate concept
space Z and the label space )’ depend on the spe-
cific knowledge base. Table 1 summarizes these ex-
amples,where in modular addition task 2 < k£ < 10.

For the XOR task (d/L = 1), interchanging the concepts 0 and 1, i.e., [l — O, — 1 and vice
versa, minimizes the NeSy risk. For the modular addition task (k = 9,d/L = 0.2), swapping the
mappings of 0 and 9, i.e., [ — O, — 9 and vice versa, minimizes the NeSy risk.

Remark 1. A direct implication from theorem 3.7 is that the expected concept error does not in-
crease monotonically with the number of DCSP solutions but is instead with the disagreement d.
For example, in the modular addition task: (i) When &k = 8, there are 4 solutions, with d/L = 0.4;
However, (ii) when & = 10, there are only 2 solutions, yet d/L = 1. This occurs because the
significant disagreement between the two solutions leads to an unbounded worst-case concept error.

3.5 Aggregation of Unlearnable Tasks

Certain NeSy tasks are inherently unlearnable because they admit multiple solutions to their DC-
SPs, resulting in ambiguity. This ambiguity cannot be resolved by increasing data or improving the
learning algorithm, as it stems from intrinsic task properties. Interestingly, however, such unlearn-
able tasks may become learnable when combined under a multi-task learning paradigm. The key
insight is that tasks can mutually constrain each other, reducing ambiguity.

Consider two unlearnable tasks, 7; and 73, with their solution spaces S; and Sy, where |S;| > 2
and |S3| > 2. In a multi-task learning setting, the combined task requires satisfying constraints
from both tasks at the same time, creating the solution set S,ss = S1 N Sa. For the combined task to
become learnable, two key conditions must hold: (1) concept space overlap: Z1 N 25 # &; and (2)
reduced DCSP disagreement: dyey = |21 U Z5| — |Union(S,ge)| < min(dy, da). This reduction of
the solution space reduces ambiguity and may lead to a unique solution, making the combined task
learnable. Therefore, by using the mutual constraints from overlapping solution spaces, combining
unlearnable tasks in an aggregation framework can enable learnability. From the perspective of
DCSP, we can formally state the corollary as follows:

Corollary 3.8. NeSy tasks become learnable in an aggregation framework if combining their DCSPs
results in a unique solution.

4 Empirical Study

To empirically validate the theoretical results, we conducted a series of experiments, including arith-
metic tasks shown in table 1 and BDD-OIA Xu et al. (2020), which is evaluated in Marconato et al.
(2023b) as a realistic application. Due to space limitations, some experimental results are presented
in the appendix.

Setup Manhaeve et al. (2018) proposed the digit addition task by incorporating the handwrit-
ten MNIST (LeCun et al., 1994) and predefined addition rules. We extend the setup by including
KMNIST (Clanuwat et al., 2018), CIFAR10 Krizhevsky (2009), and SVHN (Netzer et al., 2011),
mapping class indices to digits, e.g., CIFAR-10 classes (airplane = 0,...), and enriching the
background knowledge as depicted in table 1. The learning model for MNIST and KMNIST is
LeNet (LeCun & Bengio, 1998), while ResNet50 (He et al., 2016) is used for CIFAR10 and SVHN.
Besides that, we also adopt BDD-OIA from Bortolotti et al. (2024), which is a multi-label au-
tonomous driving task for studying RSs in real-world, high-stakes scenarios. All experiments were
conducted five times with different random seeds. Details can be seen in section C.
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Figure 1: Accuracies versus sample size for different NeSy tasks (top MNIST and bottom KMNIST).
The shadowed area denotes the standard error. The number of the DCSP solutions (#Sols) is shown at
the top left of each plot. The asymptotic bound (green line) from theorem 3.7 indicates that concept
accuracy should exceed this bound as the sample size grows.

Method To effectively optimize the NeSy risk (2), we adopt the following surrogate (cf. proof in
section B.1):

_E(m,y) log Z p [ya z | €, fa KB] ) (7)
zeN(y)
which is flexible, where N (y) C A(y) represents several valid candidates for the final answer
y. By restricting the size of N (y) from the entire set A(y) to the most likely candidate Z, we
achieve a balance between PNL and ABL, and we set the size of N (y) is min (16,]|A(y)|). The
implementation is based on the code of He et al. (2024b). For brevity, detailed experiments on PNL
and ABL are provided in section C.

4.1 Empirical Analysis on Learnability

Add Mul
We empirically evaluate the learnability of NeSy 1.00 R
. T/ [ |

tasks based on theorem 3.6, focusing on two key  _osstl-A-{ (A4 1A HWA- A4 A
aspects: (i) validating that minimizing the NeSy £ os

risk consistently minimizes the concept risk for = ,;

learnable tasks, and (ii) examining how DCSP 000

1 2 3 4 1 2 3 4

solution disagreement affects learnability. o om0 Remoning Ace

(i) Validation of learnable tasks. We first vali-
date the learnability conditions (cf. theorem 3.6)
by examining addition and multiplication tasks
(cf. table 1). Solving the DCSP shows that both tasks are learnable, and their learnability remains
unaffected by increases in digit size (e.g., from PROD(ER, F]) = 2 to PROD(ENd, FlA) = 200). The
raw dataset in figure 2 is MNIST, and additional results for other datasets are in the appendix. We
further substantiate learnability by examining tasks with varying digit sizes, ranging from one to
four digits. As depicted in figure 2, the results confirm that: (a) Optimization of the surrogate risk
(7) effectively minimizes the NeSy risk. (b) For learnable tasks, a good minimizer of the NeSy risk
also serves as a reliable minimizer of the concept risk.

Figure 2: Accuracies on the learnable tasks.

(ii) Impact of DCSP solution disagreement. We further investigate how disagreement in DCSP
solutions impacts learnability. According to theorem 3.7, the asymptotic error is bounded by the
ratio of DCSP solution disagreement d to the size of the concept space L. Experiments involving
addition and modular addition tasks with varying modular bases k reveal that altering the knowledge
base changes the DCSP solution space, directly influencing learnability. For clarity, we plot the
asymptotic accuracy bound for each task, i.e., 1 — d/L, showing that higher disagreement results
in a lower bound line (green). As shown in figure 1: (a) Tasks with a unique DCSP solution are
learnable; (b) Tasks with high DCSP disagreement struggle to achieve low concept risk, even as the
sample size increases.
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Figure 3: Aggregation of unlearnable NeSy tasks. The left shows confusion matrices and the right
displays accuracy curves. (a) The top row illustrates an unlearnable case, where combining the
tasks still results in multiple DCSP solutions. (b) The bottom row illustrates a learnable case, where
combining the tasks reduces the DCSP solutions to a single one.

In summary, our empirical analysis confirms the theoretical learnability conditions by demonstrating
that minimizing the NeSy risk reliably minimizes the concept risk for learnable tasks. Furthermore,
tasks with lower disagreement exhibit better learnability, while those with high disagreement suffer
from ambiguity due to multiple conflicting solutions.

4.2 Further Evaluation on a Realistic Task: BDD-OIA

We further extend our experiments to the real- Table 2: Accuracies and standard deviations on
istic BDD-OIA task, a multi-label autonomous  he BDD-OIA task across five seeds.

driving benchmark in real-world, high-stakes

scenarios. The knowledge base KB encodes, _Method Reasoning Acc _Concept Acc
it 3 LTN (Badreddine et al., 2022) 27.224552 20.4145.05
for example, that s unsafe to moye forward DeepProbLog (Manhaeve et al., 2021a) 44.6940.19 0.00+0.00
when pedestrians are present, using a set of  ABL (Daietal, 2019) 75.1610.12 66.9245.56
A3BL (He et al., 2024b) 60.9140.01 88.37+0.00

21 binary concepts indicating various obstacles
on the road. The constraints specify condi-
tions for proceeding (green_light V follow V clear = forward), stopping (red_light V
stop-sign V obstacle = stop), turning left and right, and relationships between actions (e.g.,
stop = —forward). In this task, there are 74,240 DCSP solutions, and the disagreement among
these solutions is 15, indicating a typically unlearnable problem under our criterion. We evaluate
several methods on this task: LTN and DeepProbLog are implemented using the rsbench code-
base (Bortolotti et al., 2024), whereas ABL and A3BL use their official implementations.

4.3 Aggregation of Unlearnable NeSy Tasks

With the DCSP framework, we find that certain NeSy tasks are inherently unlearnable because their
DCSPs admit multiple solutions, resulting in inherent ambiguity. However, when combined in an
aggregation framework within a multi-task learning setting, such tasks may become learnable by
enforcing mutual consistency, as shown in corollary 3.8. We evaluate corollary 3.8 using mod addi-
tion tasks with mod bases k; and k- under two specific configurations: an unlearnable aggregation
(k1 = 2, ko = 3) and a learnable aggregation (k; = 3, ko = 4). For k = 2, 3, 4, the degree of DCSP
solution disagreement d is 10. The experiments in figure 3 are based on the raw MNIST dataset.
Additional details and experiments are provided in section C.2.3.

In the top of figure 3, the unlearnable case (k; = 2, ko = 3) shows that while the aggregation nar-
rows the solution space, reducing the disagreement d to 8, it does not converge to a unique solution,
and the task remains unlearnable. In the bottom of figure 3, the learnable case (k1 = 3, ko = 4)
illustrates that both tasks initially admit multiple DCSP solutions, causing reasoning accuracy to
exceed concept accuracy, as shown in figure 3. Through the aggregation, the intersection of solution
spaces shrinks, with the disagreement d reduced to 0, making the aggregation task learnable.



This experimental result supports corollary 3.8, demonstrating that forming aggregations of different
NeSy tasks can enhance learnability by mutually constraining DCSP solution spaces. This finding
suggests that collecting tremendous NeSy tasks and jointly learning them in an aggregation manner
could improve the learnability and potentially introduce a “scaling law” (Kaplan et al., 2020) in the
NeSy domain.

5 Limitations and Future Directions

This paper focuses exclusively on hybrid neuro-symbolic systems, e.g., probabilistic neuro-symbolic
and abductive learning methods. Thus the findings may not directly extend to other types of neuro-
symbolic methods. The analysis of this study relies on a restricted hypothesis space, which is in-
herently satisfied by models such as neural networks equipped with manifold regularization (Belkin
et al., 2006) or self-supervised pretraining (Liu et al., 2021). However, extending the framework to
encompass more general hypothesis spaces without requiring this specific property remains an open
challenge.

Future work may involve a deeper investigation into extending the learnability framework to en-
compass a broader range of NeSy systems. Additionally, exploring the learnability of the semi-
supervised case of NeSy tasks, where some training examples are supervised for intermediate con-
cepts, could be an interesting direction. Developing practical strategies for constructing effective
task aggregations aslo represents a promising avenue for improving learnability in many scenarios.

Moreover, because solving CSPs is NP-hard in general, the DCSP framework may face compu-
tational scalability challenges for large-scale knowledge bases. Future directions include approx-
imation methods such as sampling-based estimation (e.g., uniform sampling Heradio et al. 2020),
incorporating practical heuristics (e.g., exploiting symmetries in the knowledge base), and decom-
posing complex knowledge bases into simpler sub-tasks with tractable CSPs (Hu et al., 2025b).

6 Conclusion

We establish that a neuro-symbolic task is learnable if and only if the derived constraint satisfac-
tion problem (DCSP) has a unique solution. This conclusion is consistent with previously found
reasoning shortcuts problem. With the DCSP framework, we can conduct a comprehensive analysis
on sample complexity and concept error based on the disagreement d among these solutions. This
framework also implies that forming aggregations of unlearnable tasks reduces the disagreement d,
thereby enhancing overall task learnability.
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Appendix

The appendix is structured as follows.

 Section A contains discussion about reasoning shortcuts and previous theoretical works.
* Section B contains proofs omitted in the main paper, because of the space limit.
 Section C contains more details and additional experiments.

A Extended Related Works

To contextualize and highlight the distinct contributions of this work, we undertake a comprehensive
and critical analysis of several closely related studies in neuro-symbolic learning.

A.1 Neuro-Symbolic Methods

The combination of learning and reasoning remains the holy grail problem of Al for decades
now (Towell & Shavlik, 1994; Sun, 1994; Garcez et al., 2002). One promising approach is to di-
rectly incorporate logical constraints into the loss function as the optimization objective (Xu et al.,
2018; Roychowdhury et al., 2021; Badreddine et al., 2022). However, since the logical constraint is
discrete, the optimization must be projected into the continuous space. This requires an approxima-
tion of logical reasoning. Such an approach can lead to issues when approximating discrete logical
computations (van Krieken et al., 2022; He et al., 2024a). It is also worth noting that there is a line
of research on knowledge extraction and injection for perception models (Ciatto et al., 2024; von
Rueden et al., 2023; Agiollo et al., 2023; Magnini et al., 2022).

A more effective approach is the hybrid system, where both the learning and reasoning mod-
els function at their full capacity. For instance, DeepProbLog (Manhaeve et al., 2018, 2021a),
NeurASP (Yang et al., 2020), and Scallop (Li et al., 2023) employ probabilistic logic program-
ming as their reasoning model. ABL (Zhou, 2019; Dai et al., 2019) employs abductive reasoning for
logical inference. Recently, there have been some studies on NeSy with auto-regressive or temporal
models (Manginas et al., 2025; Smet et al., 2025). Building on the hybrid approach, there have been
many successful applications (Mao et al., 2019; Wang et al., 2021; Cai et al., 2021; Verreet et al.,
2023; Gao et al., 2024; Jiao et al., 2024). Since the hybrid approach has shown its superiority, it is
worthwhile to establish a theoretical framework for analyzing its learnability.

A.2 Reasoning Shortcuts Works
Marconato et al. (2023b) gave a formal definition of reasoning shortcut (RS):

A reasoning shortcut is a distribution pg(C | X) that achieves maximal log-
likelihood on the training set but does not match the ground truth concept dis-
tribution,

They further proposed several approaches to mitigate this issue. Furthermore, Marconato et al.
(2023a) propose a new paradigm that combines continual learning with neuro-symbolic learning by
structuring multiple NeSy tasks as a sequential process, which may help mitigate the RS problem.
Subsequently, Marconato et al. (2024) use entropy regularization to address the RS problem. Bor-
tolotti et al. (2024) construct a benchmark to evaluate this problem. Although the RS problem has
been studied, an in-depth theoretical explanation and analysis is still lacking.

Our analysis provides new insights into the RS problem. From the perspective of DCSP, we can
gain a deeper understanding of the RS problem. The presence of multiple DCSP solutions directly
corresponds to the existence of deterministic RSs, as defined in Marconato et al. (2023b). Instead
of simply counting solutions, we argue that disagreement d offers a more nuanced characterization
of concept error. Moreover, a key implication of theorem 3.7 is that concept error does not increase
monotonically with the number of DCSP solutions; instead, it depends on their level of disagree-
ment (cf. remark 1).
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A.3 Theoretical Works

Several works have explored theoretical insights into neuro-symbolic learning. Below, we provide a
discussion of these efforts and contrast them with our contributions.

Wang et al. (2023) introduces multi-instance partial label learning (MI-PLL) and proposes an “M -
unambiguity” condition for learnability. They define this condition as follows:

A transition o is M-unambiguous if, for any two diagonal label vectors z and
2 € ZM such that z # 2/, we have o(z) # o(2').

Here, we slightly modify the notation to ensure consistency with this paper. A diagonal label vector
consists of identical elements in every position. When M = 1, the concept label can be directly
inferred from the transition function o, reducing the problem to a standard supervised learning
setting with well-established learnability guarantees. Building upon this condition, they derive a
concept error bound based on the VC-dimension.

Compare with Wang et al. (2023), the advantages of our work are:

a) Their learnability condition assumes repetitive input patterns (e.g., [z, 2, . . . ]) to satisfy sym-
bolic constraints, which is unrealistic in practical applications. For example, in autonomous
driving scenarios, neuro-symbolic systems usually process diverse predicates and facts, contra-
dicting this assumption. In contrast, our framework provides a more general learnability analy-
sis that is both easier to verify using modern constraint satisfaction problem (CSP) solvers and
applicable to both probabilistic neuro-symbolic learning and abductive learning.

b) Even in unlearnable cases, our approach establishes a lower bound for concept error by analyz-
ing the disagreement among DCSP solutions, offering insights into these unlearnable scenarios.

Tao et al. (2024) examine scenarios where randomly selecting abduction candidates results in a
consistent optimization objective within the abductive learning (ABL) framework. They formulate
the learning process as a weakly supervised learning problem and analyze its consistency through a

probabilistic matrix Q € Rex(m121) (cf. Section 3 in Tao et al. (2024)).

Lett € {0,...,|Y|— 1} and o = tm + k, Qjo represents the probability of the
class j occuring at the k-th position in a sequence of final label t.

If Q is full-rank, the concept-level supervision can be fully recovered, ensuring that the task is
learnable under their ABL formulation. However, construction of such a matrix @) requires full
knowledge of the backhind concept sequence distribution, which is not easy to derive.

Yang et al. (2024) introduce a shortcut risk metric R to quantify the discrepancy between true risk
and surrogate risk:

Ry = —Eqy 2 logpe(z | x) +% > log (Z I[z ANKB [=y] - po(z | w)) ~

(z,y)eD z€Z

They further establish an upper bound on R based on the complexity of the knowledge base:
1
E:c,y[Rs] S 5 log (C - DKB) + v,

where Dyg := Egyy [Y.,c 2 [(z A KB}~ y)] measures knowledge base complexity, C is the size of
concept sequence space, and v is a constant dependent on the hypothesis space. However, a low
R does not necessarily imply a low concept error, meaning their results do not directly establish
the learnability of NeSy tasks. Furthermore, their complexity measure does not account for depen-
dencies between concept sequences. Consequently, the derived bound is loose and they classify the
addition task as “unbounded” (cf. Definition 4.1 in Yang et al. (2024)). In contrast, our analysis and
experiments demonstrate that it is learnable under a restricted hypothesis space.
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B Proofs

In this section, we give the proofs that are omitted in the main text. For the convenience of the
reader, we re-state the assumptions, lemmas, propositions, and theorems in the appendix again.

B.1 Proof of Theorem 2.1

Theorem 2.1. A minimizer of Rpny or Rupy is also a minimizer of Ryesy. For each surrogate
R, € {RPNLa RABL}’ we have:

in R, (f) C arg min Ryes,(f),
arg?g;_l (f)_arg?g}l Nesy (f)

Proof. First, we recall the risks as follows:
RenL(f) = —E(z.y) logZ]I(z AKB=y)-plz | x; f,KB],

RABL(f) = 7]E(cc,y) IOg (p [ya z ‘ Z; fa KB]) .

To unify the proof, we introduce (7) as a surrogate form:

RAS(f) - *E(:c,y) log Z p [y7 z ‘ x; f, KB] s
zZEN ()

where the set NV (y) denotes the candidate set satisfying:
VzeN,zAKBEy.

Furthermore, we reformulate the PNL risk using a union-based representation:

RPNL(f) = _E(m,y) 10g Z I[(Z N KB ': y) P [Z | T f7 KB}
z€A(y)

= —E@ylog | Y. ply,z | Kg
z€A(y)

Consequently, R,s emerges as a flexible surrogate. By adjusting the size of the candidate set, we can
interpolate between the ABL risk and the PNL risk. Thus, it suffices to prove that for any candidate
set M (y), Ras achieves the desired objective.

Since the following properties hold:

» Forany f € F,therisk Rs3(f) > 0.
* For the labeling function g, the risk Rps(g) = 0.

Therefore, the minimum achievable value of this risk is strictly 0. For any f* € arg minger Ras(f),
we have Rys(f*) = 0, which implies that, for a fixed candidate set A'(y) and any (x, y):

> ply.z| @ f* k8]

zZeN (y)
= Y I(zAKBEy) pp-(2]z)=1.
ZEN (y)

Consequently, any Z predicted by the learning model f* with a probability greater than zero will
satisfy the knowledge base, i.e., Z A KB = y. This ensures that the NeSy risk Rnesy(f) =
—E(a,y) [I(f*(x) AKB [~ y)] is also zero. Since the NeSy risk should also be greater or equal to
zero, which means the hypothesis f* is a minimizer of NeSy risk. Hence, the proof is complete. [J

17



B.2 Proof of Proposition 3.3

Proposition 3.3. For an ambiguous NeSy task T, if the hypothesis space F shatters the task, then
there exists a hypothesis f* that minimizes Ry.s, but does not minimize Roy;.

Proof. By the definitions of Rnesy and R, we have:

Bresy(f) = Eay) [1(f(z) AKB = y)],

and, thus,

Ron(f) = Eq . [I(f(x) # 2)].
Since 7 is ambiguous, i.e., there exists a y € ) such that |A(y)| > 2, we assume, without loss of
generality, a sample pair (o, yo) € (X™, ) such that {z1, 22} C A(yo).

Given that the hypothesis space F is sufficiently complex to shatter the task, we assume the existence
of two hypotheses f; and f> that yield identical correct predictions for all inputs except x:

{fl(wo)_zlv fa(mo) = 22 if £ = xo,
fi(x) = fo(x) otherwise.

By definition, as f; and f- yield identical predictions except at &, we have Rnesy(f1) = Rnesy(f2).
However, since z1 # z», there exists at least one index k € [m] such that (21); # (22). Thus, by
the definition of Ry, we observe that Ry (f1) # Ron(f2), as at the sample (), they produce
two distinct recognition results.

In this scenario, even if f; represents the underlying ground truth mapping function, it is indistin-
guishable from f5, as both achieve zero risk under the optimized objective Rnesy. This concludes
that (RNeSy — O) 7é> (RQ/[ — 0) L]

B.3 Proof of Lemma 3.4

Lemma 3.4. For a NeSy task T, if the DCSP solution disagreement d = 0, then the NeSy risk is
consistent with the concept risk. Formally, for any f € F:

RNeSy(f) —- 0 <— Ro/[(f) — 0.

Proof. We first prove the direction:

(RNeSy — 0) = (R0/1 — 0) .
This is evident because, as Ry, approaches zero, f must correctly classify all input-output pairs,
which consequently drives Rnesy to zero as well.

Next, we prove the direction: (Rnesy — 0) = (Ro1 — 0) . Equivalently, we prove the contraposi-
tive:

(Ron # 0) = (BRnesy 7+ 0) .

Suppose Ry;; # 0. Then, there exist integers i, j € [L] with ¢ # j such that f misclassifies elements
of the set

(x); ={z |z e X, g(x) =i}
as belonging to class j.

Recall that the DCSP of 7 has a unique solution, which ensures that the correct labels are unam-
biguous. As the training set size grows, there must exist a sample (x,y) € (X™,)) such that
set(x) N (z), # @ and f(x) € A(y). This implies that Rnesy /> 0.

Thus, by proving both directions, we complete the proof. O
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B.4 Proof of Theorem 3.6

First, we recall that the learnability analysis depends on two assumptions.

Assumption 3.5. The set of possible concept sequences, B = ¢y A(y), where A(y) is the set
of valid concept combinations for label y, has finite cardinality; and the probability of sampling a
concept sequence is at least k > 0

Based on the assumptions, we first prove the below lemma, which states the sample complexity
under the learnable case, when the hypothesis space is restricted hypotheses space.

Lemma B.1. Consider a NeSy task T with above assumptions and d = 0. By applying empirical
risk minimization, the hypothesis f = argminycr« Ryesy(f) ensures that Ry, (f) < € for any
€ > 0, provided that the training size N satisfies the inequality:

1
N>-log(|6|>.
K €

Proof. Recall that empirical risk minimization, based on the neuro-symbolic risk RNesy, corresponds
to solving a derived constraint satisfaction problem over the restricted hypothesis space F*. By
lemma 3.4, if the training set includes all possible concept sequences, the minimum value of Fesy
becomes zero. This ensures that Ry, also attains a value of zero. Therefore, it is crucial to analyze
the sampling process of the training data.

Let ) denote the event that “not all concept sequences are sampled in the training data”. The concept
risk is the probability of event P that “for a random sample (x, z), the learned hypotheses wrongly

classified, i.e., p[f(x) # z|”. It is obvious that event P is included by event @ in the probabilistic
space. Therefore, we conclude that the true risk is bounded by the probability of event Q:

Ron(f) = plf(z) # 2] < plQ).

To bound Ry, it suffices to bound p[Q)]. For any individual concept sequence z;, the probability
that it is not sampled after N draws is given by:

Q-p)N <1-wm".
Applying the union-bound inequality, we derive:

plQI < BI(1-r)™ .

Since (1 — z) < exp(—=2) holds for > 0, we can further bound Ry, (f) as follows:

Ron (f) < plQ] < |Blexp(=N - k).

Given that R ( f ) < ¢, it follows that:

N21~log(|8|).
K €

This completes the proof of the proposition. O

Theorem 3.6. For a neuro-symbolic task T with a restricted hypothesis space F*, learnability is
determined by the following conditions:

e [f the derived constraint satisfaction problem has a unique solution, the task is learnable. Specif-
ically, the concept error is bounded by €, provided that the sample size N satisfies:

1
N > — log (|B]/€) .
e Otherwise, the task is unlearnable.

Proof. The proof is divided into two parts:
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1. If the disagreement d equals zero, the task is learnable, and the sample complexity is
O(;; - log(|B]/¢)).
2. If the disagreement d is greater than zero, the DCSP solution space contains at least two
distinct solutions, making the task unlearnable.
The first part follows directly from lemma B.1. Hence, we focus on proving the second part by

contradiction.

If the DCSP has multiple solutions, there exists (x,y) € (X™,)) such that two distinct concept
sequences z; and zo are valid, i.e., z; AKB |=y and 22 AKB |= 4.

Since both fi(x) = z; and fo(x) = 2, are valid solutions for (z, ), and z1 and 2 are distinct, it
follows that their true risks cannot be simultaneously zero. Thus, at least one of them must have a
Ry greater than zero. Without loss of generality, assume that Ry (f1) = €9 > 0.

Since both fl and fg achieve the minimal NeSy risk (which is zero), it is impossible to distinguish
between them using learning techniques or by adding more data. Consequently, there is no integer

N, such that for any 0 < € < €g, Ro1(f) < € holds when N > N,. This implies that the task is
unlearnable.

Combining both parts completes the proof. O

B.5 Proof of Theorem 3.7

Theorem 3.7. The average error £* is bounded by:

& <

SIS

Proof. Recall that the DCSP solution disagreement d is given by d = L — Union(S), where
Union(S) represents the common assignments among the solutions. Since the restricted hypoth-
esis space ensures that instances with the same assigned label correspond to the same concept
and vice versa. In the worst case, errors occur in at d classes, so the maximum true risk is
maxers  Roi(f) = d/L. Thus, the average error is bounded by: £* < maxyer- Ron(f) =
d/L. O
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C Experiments

We first introduce the experimental details, including data preparation, model setup, optimizer con-
figurations, hyperparameters, and implementation details. After that, we present experiments omit-
ted from the main context due to space constraints.

C.1 Experiment Details

Arithmetic tasks The raw datasets are based on MNIST (LeCun et al., 1994), KMNIST (Clanuwat
et al., 2018), CIFAR-10 (Krizhevsky, 2009), and SVHN (Netzer et al., 2011). For MNIST-style
datasets, the learning model is based on LeNet (LeCun & Bengio, 1998); other datasets use
ResNet (He et al., 2016).

BDD-OIA The dataset are based on Xu et al. (2020), all evaluated methods are using the same
backbone, i.e., Conceptizer defined in rsbench (Bortolotti et al., 2024). For the abduction-based
methods, we adopt their official implementations.

The results were obtained using an Intel Xeon Platinum 8538 CPU and an NVIDIA A100-PCIE-
40GB GPU on an Ubuntu 20.04 platform.

C.1.1 Preparing data and model

The construction of datasets is heavily based on algorithmic operations; thus, we rely on digit in-
dices mapping from class indices to digit indices. After that, different knowledge bases require
different rules. Here, we base our approach on ABLKit (Huang et al., 2024)" and the code of
He et al. (2024b)>. During the dataset construction process, we control the sample size by re-
sampling data until the sequence size exceeds a threshold, denoted as sample_size. For figure 2,
the sample_size is set to 30,000, while for aggregation experiments it is set to 120, 000; other
values are specified in the respective plots. The reasoning model employs abductive reasoning,
implemented using a cache-based search program (Huang et al., 2024).

For an example of addition, the knowledge base is programmed as follows:

class add_KB(KBBase):
def logic_forward(self, nums):

numsl, nums2 = split_list (nums)
return digits_to_number (numsl) + digits_to_number (nums2)

Figure 4: Example of addition knowledge base with Python program form.

For the modular addition task, the knowledge base is more complex:

class Mod_KB(KBBase):

def logic_forward(self, 1lsts):
numsl, nums2, mod = parse_nums_and_mods(lsts)
numsl, nums2 = digits_to_number (numsl), digits_to_number(
nums2)
return (numsil + nums2) % mod

Figure 5: Example of modular addition knowledge base with Python program form.

1
https://github.com/AbductiveLearning/ABLkit
2
https://github.com/Hao-Yuan-He/A3BL
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Algorithm 1 DCSP Solution

Require: NeSy task 7 and training set {(x;, y;) }}¥,
VD, C+ {ViYe , {Di =2}, {} D> Initialize the CSP triple
for 1=1...Ndo

C«+C U {V(x;) NKB = y;} D> Initialize the constraints
end for
S < SOLVECSP(V, D, C) > Call the CSP solver
d + L — Union(S)
return S,d

A A S o e

C.1.2 Implementation details

For all experiments, the random seeds are set to {2023, 2024, 2025, 2026, 2027} for repeating five
times. To ensure the clustering property depicted in the definition of the restricted hypothesis space,
the learning models are pre-trained. For LeNet5, we use self-supervised methods, with the weights
available in the supplementary materials. For ResNet50, we load the pre-trained weights from the
official PyTorch library, named ResNet50_Weights.IMAGENET1K_V2, and replace the last linear
layer with Linear (2048, 10).

Optimizer Configurations. All experiments use AdamW, a weight-decay variant of
Adam (Kingma & Ba, 2015), as the optimizer, with a learning rate of 0.0015 and betas set
0 (0.9,0.99). The batch size is set to 256, and unless otherwise noted, the number of epochs is set
to 10. The loss function used for optimization is cross-entropy, with further details available in the
support code.

C.2 Additional Experiments

The additional experiments include setups using raw datasets not covered in the main text, specifi-
cally the CIFAR-10 and SVHN cases. Additionally, beyond the empirical analysis on the surrogate
(7), here we refer to this as A>BL (He et al., 2024b), we also include an analysis of ABL and PNL
to ensure a comprehensive evaluation.

C.2.1 Observations of the structure of DCSP solution space

The configurations of the modular addition task and their aggregations are illustrated in fig-
ure 6. These configurations were computed using algorithm 1 with the open-source library
Choco (Prud’homme & Fages, 2022). Through the investigation of the modular addition task, we
observe that: the number of DCSP solutions is highly related to DCSP solution disagreement; how-
ever, this relationship is not monotonic. Specifically, even a small number of DCSP solutions can
result in high disagreement, as observed in the modular addition task with base k = 10.

1.0

1
0 ([ 1.00
144
0 1 00 0 00 0.00 06
© 0 80 0.00  0.00
1 1 15
~ 000 0.00 000 000 0.00 04
1 1 1 1 1 5

© [ 040 0.00 040 000 000 0.00 ' 0.40
4 1 4 1 1 1 .

Mod base 1

0.2
o 000 020 000 0.00 0.00 0.00 0.00 0.20
1 2 1 1 1 1

0.00 0.00 0.00 0.00 0 00 0 00 1 00
e e 00
2

3 4 5 6 7 8 9 10
Mod base 2

10

Figure 6: Configurations of modular additions and their aggregations. The center value represents
the ratio of disagreement d to concept size L, while the number of DCSP solutions is shown at the
bottom-left.
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Figure 7: Accuracies versus sample size for different NeSy tasks of A®BL. The shadowed area
denotes the standard error. The number of the DCSP solutions (#Sols) is shown at the top left of
each plot. The asymptotic bound (green line) from theorem 3.7 indicates that concept accuracy

should exceed this bound as the sample size grows.

C.2.2 Impact of DCSP solution disagreement

In figure 7, we present results under the same settings but using different raw datasets, specifically
CIFAR-10 and SVHN, as shown in figure 7. As illustrated in the figure, the learnable case follows a
trend similar to that in figure 1. However, in the unlearnable case, optimization becomes significantly
more challenging due to high conflicts among valid DCSP solutions. While one might suspect
that this issue stems from the specific surrogate used, applying the same settings to ABL and PNL
produces similar results (cf. figure 8 and figure 9 respectively), confirming the generality of this

observation.
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Figure 8: Accuracies versus sample size for different NeSy tasks of ABL. The shadowed area de-
notes the standard error. The number of the DCSP solutions (#Sols) is shown at the top left of each
plot. The asymptotic bound (green line) from theorem 3.7 indicates that concept accuracy should

exceed this bound as the sample size grows.

24



Mod Addition k=4 Mod Addition k=2

Addition Mod Addition k=9 Mod Addition k=8 Mod Addition k=6
10 . .
#Sols: 1 #Sols:2 FY*' #Sols:4 Sols:16 #Sols: 14 f) #Sols:28500
. 7 e / /
gos ',/ f,"‘*’ T /
204 i i * >
02 # P / ol
- 54 7 *
" -+ = i - A e & i RISV L bl
10! 00 100 10 10! 100100 10* 10! 100100 10° 10! 100 100 10t 10! 100100 10* 10! 100100 10°
Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale)
--#-- PNL Concept Acc  —@— PNL Reasoning Acc ~ —+—+~ Asymptotic Bound
(a) MNIST
Addition Mod Addition k=9 Mod Addition k=8 Mod Addition k=6 Mod Addition k=4 Mod Addition k=2
10
#Sols: 1 #Sols:2 #Sols:4 Sols: 16 #Sols: 14 #Sols:28800
08
Zos ey
>
204 v
02 we ™
E+ 4 . e >-oas o e S
00
10! 00 100 10t 10! 00 100 10t 10! 100100 10° 10! 100 10010t 10! 0 100 10t 10! 100100 10°
Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale)
--#-- PNL Concept Acc ~ —@— PNL Reasoning Acc ~ —+—+~ Asymplotic Bound
Addition Mod Addition k=9 Mod Addition k=8 Mod Addition k=6 Mod Addition k=4 Mod Addition k=2
10
#Sols:1 #Sols:2 #Sols:4 Sols: 16 #Sols: 14: #Sols: 28800
08
206
5 *-o-o
204
02 =
- - - P A ReE Si-E 5o e e e R
00
10! 00 100 10t o 10 100 ot 10! 100100 10° 10! 100 100 10t [ T TR Y 10! 100100 10°
Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale)
--#-- PNL Concept Acc  —@— PNL Reasoning Acc ~ —+—+~ Asymplotic Bound
(c) CIFAR-10
Addition Mod Addition k=9 Mod Addition k=8 Mod Addition k=6 Mod Addition k=4 Mod Addition k=2
10
#Sols: 1 ,.w-f* #Sols:2 #Sols:4 Sols:16 #Sols: 14 #Sols:28800
08 ¥
h
. !
Zos ’,[
3 J
204 : A
] -
02 *wexd f =t
s e o5 Bia == L as o - * A gy e A e e PR PP S
00
10! 00 100 10t ot 10 100 ot 10! 100100 10° 10! 00 100 10t [ T TR Y 10! 100108 10°
Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale) Sample Size (log scale)

~-#-- PNL Concept Acc  —@— PNL Reasoning Acc ~ —+—+~ Asymptotic Bound

(d) SVHN

Figure 9: Accuracies versus sample size for different NeSy tasks of PNL. The shadowed area denotes
the standard error. The number of the DCSP solutions (#Sols) is shown at the top left of each plot.
The asymptotic bound (green line) from theorem 3.7 indicates that concept accuracy should exceed

this bound as the sample size grows.
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C.2.3 Aggregation of unlearnable NeSy tasks

Here we present additional combinations of unlearnable NeSy tasks. In figure 10, we provide an
overview of all aggregation combinations using a heatmap. After that, we present a more fine-
grained analysis. In figure 11 and figure 12, we show cases where the aggregation approach fails
and succeeds respectively.

Mod base 1

5 6 7 8 9
Mod base 2

05

Mod base 1
6

Mod base 2

Figure 10: Heatmaps of aggregation mod addition tasks. Left: reasoning accuracy for different
aggregations of mod bases; Right: concept accuracy for different aggregations of mod bases. The

bottom-left corner of each cell shows the number of DCSP solutions.

By observing the experiments, we find that adopting the aggregation perspective can enrich the
benchmark diversity in the NeSy field (e.g., rsbench, Bortolotti et al. 2024), providing a clear and
controllable methodology to achieve this.
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Figure 11: aggregation of unlearnable NeSy tasks, failed case. The left shows confusion matrices
and the right displays accuracy curves. After the aggregation, the tasks are still unlearnable.
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Figure 12: aggregation of unlearnable NeSy tasks, successed case. The left shows confusion matri-
ces and the right displays accuracy curves. After the aggregation, the tasks become learnable.
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